Glassy Dynamics: From Millihertz to Terahertz

  • P. Lunkenheimer
  • Alois LoidlEmail author
Part of the Advances in Dielectrics book series (ADVDIELECT)


In this article, we review broadband dielectric spectroscopy in supercooled liquids, in many cases covering more than 15 decades in frequency and a wide range of temperatures from the low-viscosity liquid to the rigid sub-Tg glass. The access to this extremely broad frequency window allows a detailed study of the complexity of glassy freezing and glassy dynamics in a large variety of materials. Dielectric spectroscopy not only documents the enormous slowing down of the structural relaxation when approaching the glass transition, but also reveals a variety of further relaxation processes, which are important to understand the physics of the transition from a supercooled liquid into a rigid glass. After a short introduction, mainly focusing on long-term experiments on glasses and on the classification of glass formers into strong and fragile, we shortly discuss some basics of relaxation and conductivity contributions when viewed via dielectric spectroscopy. We provide some prototypical examples of dielectric loss spectra covering a large frequency and temperature regime. The glass formers shown can be categorized into two classes, type A and type B. The latter reveal well-defined Johari–Goldstein secondary relaxations, which lead to peaks in the dielectric loss at least at low temperatures. The former exhibit an excess wing, showing only a change of slope of the high-frequency flank of the structural-relaxation loss peaks. Then, we exemplify the phenomenology of glassy dynamics as revealed by these broadband spectra: The structural relaxation, the Johari–Goldstein relaxation, the appearance of a fast process as proposed by the mode-coupling theory, and the boson peak, a well-defined feature in the dielectric loss at THz frequencies, are discussed in detail. In a further chapter, we focus on the importance of sub-Tg experiments: Aging experiments and a possible experimental evidence of the Gardner transition are discussed. Finally, we summarize the experimental dielectric results documenting the universality of glassy freezing, which can be directly derived from these measurements.


Dielectric spectroscopy Glassy freezing Deborah number Structural relaxation Relaxation time Non-Arrhenius behavior Johari–Goldstein relaxation Excess wing Fast process Boson peak Aging Gardner transition 


  1. 1.
    Parisi G (2000) Phys A 280:115CrossRefGoogle Scholar
  2. 2.
    Berthier L, Ediger M (2016) Phys Today 69:41CrossRefGoogle Scholar
  3. 3.
    Reiner M (1964) Phys Today 17:62CrossRefGoogle Scholar
  4. 4.
    Zanotto ED (1998) Am J Phys 66:392CrossRefGoogle Scholar
  5. 5.
    Zanotto ED, Gupta PK (1999) Am J Phys 67:260CrossRefGoogle Scholar
  6. 6.
    Pasachoff JM (1998) Am J Phys 66:1021CrossRefGoogle Scholar
  7. 7.
    Edgeworth R, Dalton BJ, Parnell T, Eur J Phys 198 (1984)Google Scholar
  8. 8.
    Johnston R, Nature News, 18 July 2014.
  9. 9.
    Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) J Chem Phys 99:4201CrossRefGoogle Scholar
  10. 10.
    Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) J Appl Phys 88:3113CrossRefGoogle Scholar
  11. 11.
    Böhmer R, Angell CA (2003) In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, p 11Google Scholar
  12. 12.
    Adam G, Gibbs JH (1965) J Chem Phys 43:139CrossRefGoogle Scholar
  13. 13.
    Albert S, Bauer Th, Michl M, Biroli G, Bouchaud J-P, Loidl A, Lunkenheimer P, Tourbot R, Wiertel-Gasquet C, Ladieu F (2016) Science 352:1308CrossRefPubMedGoogle Scholar
  14. 14.
    Lunkenheimer P, Michl M, Bauer Th, Loidl A (2017) Eur Phys J Special Topics 226:3157CrossRefGoogle Scholar
  15. 15.
    Chandler D, Garrahan JP (2010) Annu Rev Phys Chem 61:191CrossRefPubMedGoogle Scholar
  16. 16.
    Dzero M, Schmalian J, Wolynes PG (2012) In: Wolynes PG, Lubchenko V (eds) Structural glasses and supercooled liquids: theory, experiment and applications. Wiley, Hoboken, p 193Google Scholar
  17. 17.
    Böhmer R, Maglione M, Lunkenheimer P, Loidl A (1989) J Appl Phys 65:901CrossRefGoogle Scholar
  18. 18.
    Schneider U, Lunkenheimer P, Pimenov A, Brand R, Loidl A (2001) Ferroelectrics 249:89CrossRefGoogle Scholar
  19. 19.
    Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Contemp Phys 41:15CrossRefGoogle Scholar
  20. 20.
    Lunkenheimer P, Loidl A (2002) Chem Phys 284:205CrossRefGoogle Scholar
  21. 21.
    Lunkenheimer P, Köhler M, Kastner S, Loidl A (2012) In: Wolynes PG, Lubchenko V (eds) Structural glasses and supercooled liquids: theory, experiment and applications. Wiley, Hoboken, p 115Google Scholar
  22. 22.
    Richert R (2015) Adv Chem Phys 156:101Google Scholar
  23. 23.
    Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, BerlinGoogle Scholar
  24. 24.
    Schiener B, Böhmer R, Loidl A, Chamberlin RV (1996) Science 274:752CrossRefGoogle Scholar
  25. 25.
    Lunkenheimer P, Wehn R, Schneider U, Loidl A (2005) Phys Rev Lett 95:055702CrossRefPubMedGoogle Scholar
  26. 26.
    Geirhos K, Lunkenheimer P, Loidl A (2018) Phys Rev Lett 120:085705Google Scholar
  27. 27.
    Crauste-Thibierge C, Brun C, Ladieu F, L’Hote D, Biroli G, Bouchaud J-P (2010) Phys Rev Lett 104:165703CrossRefPubMedGoogle Scholar
  28. 28.
    Bauer Th, Lunkenheimer P, Loidl A (2013) Phys Rev Lett 111:225702CrossRefPubMedGoogle Scholar
  29. 29.
    Debye P (1912) Ann Phys 39:789CrossRefGoogle Scholar
  30. 30.
    Cole KS, Cole RH (1941) J Chem Phys 9:341CrossRefGoogle Scholar
  31. 31.
    Davidson DW, Cole RH (1950) J Chem Phys 18:1417CrossRefGoogle Scholar
  32. 32.
    Kohlrausch R (1854) Ann Phys 167:56CrossRefGoogle Scholar
  33. 33.
    Williams G, Watts DC (1970) Trans Faraday Soc 66:80CrossRefGoogle Scholar
  34. 34.
    Sillescu H (1999) J Non-Cryst Solids 243:81CrossRefGoogle Scholar
  35. 35.
    Ediger MD (2000) Annu Rev Phys Chem 51:99CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Richert R (2002) J Phys Condens Matter 14:R703CrossRefGoogle Scholar
  37. 37.
    Böhmer R (1989) J Chem Phys 91:3111CrossRefGoogle Scholar
  38. 38.
    Jonscher AK (1977) Nature (London) 267:673CrossRefGoogle Scholar
  39. 39.
    Lunkenheimer P, Loidl A (2003) Phys Rev Lett 91:207601CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dyre JC (1988) J Appl Phys 64:2456CrossRefGoogle Scholar
  41. 41.
    Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171Google Scholar
  42. 42.
    Elliott SR (1994) J Non-Cryst Solids 170:97CrossRefGoogle Scholar
  43. 43.
    Roling B (1999) J Non-Cryst Solids 244:34CrossRefGoogle Scholar
  44. 44.
    Sidebottom DL, Roling B, Funke K (2001) Phys Rev B 63:024301CrossRefGoogle Scholar
  45. 45.
    Hodge IM, Ngai KL, Moynihan CT (2005) J Non-Cryst Solids 351:104CrossRefGoogle Scholar
  46. 46.
    Böhmer R, Gainaru C, Richert R (2014) Phys Rep 545:125CrossRefGoogle Scholar
  47. 47.
    Vogel H (1921) Phys Z 22:645Google Scholar
  48. 48.
    Fulcher GS (1925) J Am Ceram Soc 8:339CrossRefGoogle Scholar
  49. 49.
    Tammann G, Hesse W, Anorg Z (1926) Allg Chem 156:245CrossRefGoogle Scholar
  50. 50.
    Angell CA (1985) In: Ngai KL, Wright GB (eds) Relaxations in complex systems. Naval Research Laboratory, Washington, DC, p 3Google Scholar
  51. 51.
    Plazek DJ, Ngai KL (1991) Macromolecules 24:1222CrossRefGoogle Scholar
  52. 52.
    Böhmer R, Angell CA (1992) Phys Rev B 45:10091CrossRefGoogle Scholar
  53. 53.
    Böhmer R (1994) J Non-Cryst Solids 172–174:628CrossRefGoogle Scholar
  54. 54.
    Vilgis TA (1993) Phys Rev B 47:2882CrossRefGoogle Scholar
  55. 55.
    Johari GP, Goldstein M (1970) J Chem Phys 53:2372CrossRefGoogle Scholar
  56. 56.
    Stillinger FH (1995) Science 267:1935CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Harmon JS, Demetriou MD, Johnson WL, Samwer K (2007) Phys Rev Lett 99:135502CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gainaru C, Lips O, Troshagina A, Kaghlau R, Brodin A, Fujara F, Rössler E (2008) J Chem Phys 128:173505CrossRefGoogle Scholar
  59. 59.
    Kudlik A, Benkhof S, Blochowicz T, Rössler E (1999) J Mol Structure 479:201CrossRefGoogle Scholar
  60. 60.
    Köhler M, Lunkenheimer P, Goncharov Y, Wehn R, Loidl A (2010) J Non-Cryst Solids 356:529CrossRefGoogle Scholar
  61. 61.
    Köhler M (2010) Relaxation, rattling, and decoupling. dynamic processes in glassy matter. Mensch und Buch, BerlinGoogle Scholar
  62. 62.
    Kastner S, Köhler M, Goncharov Y, Lunkenheimer P, Loidl A (2011) J Non-Cryst Solids 357:510CrossRefGoogle Scholar
  63. 63.
    Havriliak S, Negami S (1966) J Polym Sci C 14:99CrossRefGoogle Scholar
  64. 64.
    Ngai KL (2003) J Phys Condens Matter 15:S1107CrossRefGoogle Scholar
  65. 65.
    Lunkenheimer P, Emmert S, Gulich R, Köhler M, Wolf M, Schwab M, Loidl A (2017) Phys Rev E 96:062607CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bartoš J, Iskrová M, Köhler M, Wehn R, Šauša O, Lunkenheimer P, Krištiak J, Loidl A (2011) Eur Phys J E 34:104CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Brand R, Lunkenheimer P, Schneider U, Loidl A (1999) Phys Rev Lett 82:1951CrossRefGoogle Scholar
  68. 68.
    Schneider U, Brand R, Lunkenheimer P, Loidl A (2000) Phys Rev Lett 84:5560CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lunkenheimer P, Wehn R, Riegger Th, Loidl A (2002) J Non-Cryst Solids 307–310:336CrossRefGoogle Scholar
  70. 70.
    Döß A, Paluch M, Sillescu H, Hinze G (2002) Phys Rev Lett 88:095701CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hensel-Bielowka S, Pawlus S, Roland CM, Zioło J, Paluch M (2004) Phys Rev E 69:050501(R)CrossRefGoogle Scholar
  72. 72.
    Mattson J, Bergman R, Jacobsson P, Börjesson L (2003) Phys Rev Lett 90:075702CrossRefGoogle Scholar
  73. 73.
    Blochowicz T, Rössler EA (2004) Phys Rev Lett 92:225701CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Schneider U (2000) Breitbandige dielektrische Studien der Dynamik struktureller Glasbildner. Books on Demand, Norderstedt. ISBN 3-8311-0921-4Google Scholar
  75. 75.
    Lunkenheimer P, Kastner S, Köhler M, Loidl A (2010) Phys Rev E 81:051504CrossRefGoogle Scholar
  76. 76.
    Jeong YH (1987) Phys Rev A 36:766CrossRefGoogle Scholar
  77. 77.
    Jeong YH, Nagel SR, Bhattacharya S (1986) Phys Rev A 34:602CrossRefGoogle Scholar
  78. 78.
    Larsson KE (1968) Phys Rev 167:171CrossRefGoogle Scholar
  79. 79.
    Gupta S, Arend N, Lunkenheimer P, Loidl A, Stingaciu L, Jalarvo N, Mamontov E, Ohl M (2015) Eur Phys J E 38:1CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Posch HA, Dardy HD, Litovitz TAS (1977) Ber Bunsenges Physik Chemie 88:744CrossRefGoogle Scholar
  81. 81.
    Ewell RH (1938) J Appl Phys 9:252CrossRefGoogle Scholar
  82. 82.
    Segur JB, Oberstar HE (1951) Ind Eng Chem 43:2117CrossRefGoogle Scholar
  83. 83.
    Piccirelli R, Litovic TA (1957) J Acoust Soc Am 29:1009CrossRefGoogle Scholar
  84. 84.
    Börjesson L, Elmroth M, Torell LM (1990) Chem Phys 149:209CrossRefGoogle Scholar
  85. 85.
    Du WM, Li G, Cummins HZ, Fuchs M, Toulouse J, Knauss LA (1994) Phys Rev E 49:2192CrossRefGoogle Scholar
  86. 86.
    Bondeau A, Huck J (1985) J Phys (France) 46:1717CrossRefGoogle Scholar
  87. 87.
    Chen Z, Angell CA, Richert R (2012) Eur Phys J E 35:65CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Mauro JC, Yue Y, Ellison AJ, Gupta PK, Allan DC (2009) Proc Natl Acad Sci USA 106, 19780Google Scholar
  89. 89.
    Angell CA, Sichina W (1976) Ann NY Acad Sci 279:53CrossRefGoogle Scholar
  90. 90.
    Wang L-M, Angell CA, Richert R (2006) J Chem Phys 125:074505CrossRefPubMedGoogle Scholar
  91. 91.
    Ngai KL, Lunkenheimer P, León C, Schneider U, Brand R, Loidl A (2001) J Chem Phys 115:1405CrossRefGoogle Scholar
  92. 92.
    Hensel-Bielowka S, Paluch M (2002) Phys Rev Lett 89:025704CrossRefPubMedGoogle Scholar
  93. 93.
    Dyre JC, Olsen NB (2003) Phys Rev Lett 91:155703CrossRefPubMedGoogle Scholar
  94. 94.
    Paluch M, Roland CM, Pawlus S, Zioło J, Ngai KL (2003) Phys Rev Lett 91:115701CrossRefPubMedGoogle Scholar
  95. 95.
    Ngai KL, Grzybowska K, Grzybowski A, Kaminska E, Kaminski K, Paluch M, Capaccioli S (2008) J Non-Cryst Solids 354:5085CrossRefGoogle Scholar
  96. 96.
    Brand R, Lunkenheimer P, Schneider U, Loidl A (2000) Phys Rev B 62:8878CrossRefGoogle Scholar
  97. 97.
    Bengtzelius U, Götze W, Sjölander A (1984) J Phys C 17:5915CrossRefGoogle Scholar
  98. 98.
    Leutheusser E (1984) Phys Rev A 29:2765CrossRefGoogle Scholar
  99. 99.
    Götze W, Sjögren L (1992) Rep Progr Phys 55:241CrossRefGoogle Scholar
  100. 100.
    Götze W (1999) J Phys Condens Matter 11:A1CrossRefGoogle Scholar
  101. 101.
    Knaak W, Mezei F, Farago B (1988) Europhys Lett 7:529CrossRefGoogle Scholar
  102. 102.
    Tao NJ, Li G, Cummins HZ (1991) Phys Rev Lett 66:1334CrossRefPubMedGoogle Scholar
  103. 103.
    Li G, Du WM, Chen XK, Cummins HZ, Tao NJ (1992) Phys Rev A 45:3867CrossRefPubMedGoogle Scholar
  104. 104.
    Li G, Du WM, Sakai A, Cummins HZ (1992) Phys Rev A 46:3343CrossRefPubMedGoogle Scholar
  105. 105.
    Wuttke J, Hernandez J, Li G, Coddens G, Cummins HZ, Fujara F, Petry W, Sillescu H (1993) Phys Rev Lett 72:3052CrossRefGoogle Scholar
  106. 106.
    Sokolov AP, Steffen W, Rössler E (1995) Phys Rev E 52:5105CrossRefGoogle Scholar
  107. 107.
    Dixon PK, Menon N, Nagel SR (1994) Phys Rev E 50:1717CrossRefGoogle Scholar
  108. 108.
    Lunkenheimer P, Pimenov A, Dressel M, Goncharov YuG, Böhmer R, Loidl A (1996) Phys Rev Lett 77:318CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Lunkenheimer P, Pimenov A, Loidl A (1997) Phys Rev Lett 78:2995CrossRefGoogle Scholar
  110. 110.
    Lunkenheimer P, Loidl A (2003) In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, p 131Google Scholar
  111. 111.
    Lunkenheimer P, Pimenov A, Dressel M, Gorshunov B, Schneider U, Schiener B, Loidl A (1997) Am Chem Soc Symp Ser 676:168Google Scholar
  112. 112.
    Götze W, Singh AP, Voigtmann Th (2000) Phys Rev E 61:6934CrossRefGoogle Scholar
  113. 113.
    Franosch T, Fuchs M, Götze W, Mayr MR, Singh AP (1997) Phys Rev E 56:5659CrossRefGoogle Scholar
  114. 114.
    Schilling R, Scheidsteger T (1997) Phys Rev E 56:2932CrossRefGoogle Scholar
  115. 115.
    Wuttke J, Ohl M, Goldammer M, Roth S, Schneider U, Lunkenheimer P, Kahn R, Rufflé B, Lechner R, Berg MA (2000) Phys Rev E 61:2730CrossRefGoogle Scholar
  116. 116.
    Götze W, Voigtmann T (2000) Phys Rev E 61:4133CrossRefGoogle Scholar
  117. 117.
    Lunkenheimer P, Wehn R, Köhler M, Loidl A (2018) J Non-Cryst Solids 492:63Google Scholar
  118. 118.
    Martin AJ, Brenig W (1974) Phys Status Solidi B 64:163CrossRefGoogle Scholar
  119. 119.
    Malinovsky VK, Sokolov AP (1986) Sol Stat Commun 57:757CrossRefGoogle Scholar
  120. 120.
    Malinovsky VK, Novikov VN, Parshin PP, Sokolov AP, Zemlyanov MG (1990) Europhys Lett 11:43CrossRefGoogle Scholar
  121. 121.
    Buchenau U, Nücker N, Dianoux AJ (1984) Phys Rev Lett 53:2316CrossRefGoogle Scholar
  122. 122.
    Buchenau U, Galperin YuM, Gurevich VL, Schober HR (1991) Phys Rev B 43:5039CrossRefGoogle Scholar
  123. 123.
    Orbach R (1986) Science 231:814CrossRefPubMedGoogle Scholar
  124. 124.
    Elliott SR (1992) Europhys Lett 19:201CrossRefGoogle Scholar
  125. 125.
    Schirmacher W, Diezemann G, Ganter C (1998) Phys Rev Lett 81:136CrossRefGoogle Scholar
  126. 126.
    Schirmacher W, Ruocco G, Scopigno (2007) Phys Rev Lett 98:025501CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Shintani LH, Tanaka H (2008) Nat Mater 7:870CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Grigera TS, Martin-Mayor V, Parisi G, Verrocchio P (2003) Nature 422:289CrossRefPubMedGoogle Scholar
  129. 129.
    Lunkenheimer P, Loidl A (2001) Adv Solid State Phys 41:405CrossRefGoogle Scholar
  130. 130.
    Lunkenheimer P, Loidl A (2006) J Non-Cryst Solids 352:4556CrossRefGoogle Scholar
  131. 131.
    Brand R, Lunkenheimer P, Loidl A (2002) J Chem Phys 116:10386CrossRefGoogle Scholar
  132. 132.
    Wehn R, Lunkenheimer P, Loidl A (2007) J Non-Cryst Solids 353:3862CrossRefGoogle Scholar
  133. 133.
    Tool AQ (1946) J Am Ceram Soc 29:240CrossRefGoogle Scholar
  134. 134.
    Narayanaswamy OS (1971) J Am Ceram Soc 54:240CrossRefGoogle Scholar
  135. 135.
    Scherer GW (1986) Relaxation in glass and composites. Wiley, New YorkGoogle Scholar
  136. 136.
    Hodge IM (1994) J Non-Cryst Solids 169:211CrossRefGoogle Scholar
  137. 137.
    Leheny RL, Nagel SR (1998) Phys Rev B 57:5154CrossRefGoogle Scholar
  138. 138.
    Yue YZ, Jensen SL, Christiansen JC (2002) Appl Phys Lett 81:2983CrossRefGoogle Scholar
  139. 139.
    Yardimci H, Leheny RL (2006) J Chem Phys 124:214503CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Moynihan CT, Macedo PB, Montrose CJ, Gupta PK, DeBolt MA, Dill JF, Dom BE, Drake PW, Easteal AJ, Elterman PB, Moeller RP, Sasabe H, Wilder JA (1976) Ann NY Acad Sci 279:15CrossRefGoogle Scholar
  141. 141.
    Lunkenheimer P, Wehn R, Loidl A (2006) J Non-Cryst Solids 352:4941CrossRefGoogle Scholar
  142. 142.
    Richert R, Lunkenheimer P, Kastner S, Loidl A (2013) J Phys Chem B 117:12689CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Gardner E (1985) Nucl Phys B 257:747CrossRefGoogle Scholar
  144. 144.
    Gross DJ, Kanter I, Sompolinsky H (1985) Phys Rev Lett 55:304CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi F (2014) Nat Commun 5:3725CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Biroli G, Urbani P (2016) Nat Phys 12:1130CrossRefGoogle Scholar
  147. 147.
    Kurchan J, Parisi G, Urbani P, Zamponi F (2013) J Phys Chem B 117:12979CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Berthier L, Charbonneau P, Jin Y, Parisi G, Seoane B, Zamponi F (2016) Proc Natl Acad Sci USA 113:8397CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Jin Y, Yoshino H (2017) Nat Commun 8:14935CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Charbonneau P, Jin Y, Parisi G, Rainone C, Seoane B, Zamponi F (2015) Phys Rev E 92:012316CrossRefGoogle Scholar
  151. 151.
    Scalliet C, Berthier L, Zamponi F (2017) Phys Rev Lett 119:205501CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Hicks CL, Wheatley MJ, Godfrey MJ, Moore MA (2018) Phys Rev Lett (in press)Google Scholar
  153. 153.
    Kirkpatrick TR, Wolynes PG (1987) Phys Rev B 36:8552CrossRefGoogle Scholar
  154. 154.
    Sperl M (2006) Phys Rev E 74:011503CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Experimental Physics V, Center for Electronic Correlations and MagnetismUniversity of AugsburgAugsburgGermany

Personalised recommendations