The Scaling of Relaxation Processes—Revisited

  • Friedrich KremerEmail author
  • Alois Loidl
Part of the Advances in Dielectrics book series (ADVDIELECT)


Glassy dynamics covers the extraordinary spectral range from 10+13 to 10−3 Hz and below. In this broad frequency window, four different dynamic processes take place: (i) the primary or α-relaxation, (ii) (slow) secondary relaxations (β-relaxations), (iii) fast absorption processes in the GHz and (iv) the boson-peak in the THz range. The dynamic glass transition is assigned to fluctuations between structural substates and scales well with the calorimetric glass transition temperature. It shows a similar temperature dependence as the viscosity and fluctuations of the density or heat capacity. The temperature dependence of the mean relaxation rate of the dynamic glass transition follows at first glance the empirical Vogel–Fulcher–Tammann law, albeit a further analysis unravels clear-cut deviations. The (slow) secondary relaxations are assigned to librational relaxations of molecular subgroups hence having a straightforward molecular assignment. They may also show up as a wing on the high-frequency side of the dynamic glass transition. The fast absorption processes at GHz frequencies can formally be described within the framework of the mode-coupling theory (MCT). The boson-peak resembles the Poley absorption and originates from overdamped oscillations. In this chapter, especially the first three contributions will be discussed in detail and compared with existing theoretical models.



Support by M. Anton in preparing some of the figures is highly acknowledged.


  1. 1.
    1th international discussion meeting on relaxation in complex systems. J Non-Cryst Solids 131–133:1–1285 (1991); 2th international discussion meeting on relaxation in complex systems. J Non-Cryst Solids 172–174:1–1457 (1994); 3th international discussion meeting on relaxation in complex systems. J Non-Cryst Solids 235–237:1–814 (1998); 4th international discussion meeting on relaxation in complex systems. J Non-Cryst Solids 307–310:1–1080 (2002); 5th international discussion meeting on relaxation in complex systems. J Non-Cryst Solids 352:4731–5250 (2006); 6th international discussion meeting on relaxation in complex systems. J Non-Cryst Solids 357:241–782 (2011); 7th international discussion meeting on relaxation in complex systems (2013); 8th international discussion meeting on relaxation in complex systems (2017)Google Scholar
  2. 2.
    Wong J, Angell CA (1976) Glass: structure by spectroscopy. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Donth EJ (1981) Glasübergang. Akademie Verlag, BerlinGoogle Scholar
  4. 4.
    Zallen R (1983) The physics of amorphous solids. Wiley, New YorkCrossRefGoogle Scholar
  5. 5.
    Elliott SR (1990) Physics of amorphous materials. Longman Scientific & Technical, LondonGoogle Scholar
  6. 6.
    Donth EJ (1992) Relaxation and thermodynamics in polymers, glass transition. Akademie Verlag, BerlinGoogle Scholar
  7. 7.
    Donth EJ (2001) The glass transition. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Ngai K (2011) Relaxation and diffusion in complex systems. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Götze W (2012) Complex dynamics of glass-forming liquids—a mode-coupling theory. Oxford Scientific Publications, OxfordGoogle Scholar
  10. 10.
    Cheng SZD (ed) (2002) Handbook of thermal analysis and calorimetry. Elsevier Science B.VGoogle Scholar
  11. 11.
    Hecksher T, Torchinsky DH, Klieber C, Johnson JA, Dyre JC, Nelson KA (2017) PNAS 114:8715CrossRefGoogle Scholar
  12. 12.
    Jeon YH, Nagel SR, Bhattacharya S (1986) Phys Rev A 34:602CrossRefGoogle Scholar
  13. 13.
    Pecora R (ed) (1985) Dynamic light scattering, applications of photon correlation spectroscopy. SpringerGoogle Scholar
  14. 14.
    Frick B, Richter D (1995) Science 267:1939–1945CrossRefPubMedGoogle Scholar
  15. 15.
    Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, LondonGoogle Scholar
  16. 16.
    Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. SpringerGoogle Scholar
  17. 17.
    Williams G, Watts DC (1970) Trans Faraday Soc 66:80CrossRefGoogle Scholar
  18. 18.
    Williams G, Watts DC, Dev SB, North AM (1971) Trans Faraday Soc 67:1323CrossRefGoogle Scholar
  19. 19.
    Johari GP, Goldstein M (1970) J Chem Phys 53:2372CrossRefGoogle Scholar
  20. 20.
    Johari GP (1976) In: Goldstein M, Simha R (eds) The glass transition and the nature of the glassy state. Ann New York Acad Sci 279:117Google Scholar
  21. 21.
    Johari GP (1986) J Chem Phys 85:6811CrossRefGoogle Scholar
  22. 22.
    Dixon PK, Wu L, Nagel SR, Williams BD, Carini JP (1990) Phys Rev Lett 65:1108CrossRefPubMedGoogle Scholar
  23. 23.
    Dixon PK (1990) Phys Rev B 42:8179CrossRefGoogle Scholar
  24. 24.
    Dixon PK, Menon N, Nagel SR (1994) Phys Rev E 50:1717CrossRefGoogle Scholar
  25. 25.
    Lunkenheimer P, Gerhard G, Drexler F, Böhmer R, Loidl A (1995) Z Naturforsch 50A:1151Google Scholar
  26. 26.
    Lunkenheimer P, Pimenov A, Schiener B, Böhmer R, Loidl A (1996) Europhys Lett 33:611CrossRefGoogle Scholar
  27. 27.
    Lunkenheimer P, Loidl A (1996) J Chem Phys 104:4324CrossRefGoogle Scholar
  28. 28.
    Lunkenheimer P, Pimenov A, Dressel M, Gonscharev Yu G, Böhmer R, Loidl A (1996) Phys Rev Lett 77:318CrossRefPubMedGoogle Scholar
  29. 29.
    Lunkenheimer P, Pimenov A, Loidl A (1997) Phys Rev Lett 78:2995CrossRefGoogle Scholar
  30. 30.
    Lunkenheimer P, Pimenov A, Dressel M, Schiener B, Schneider U, Loidl A (1997) Progr Theor Phys Suppl 126:123CrossRefGoogle Scholar
  31. 31.
    Lunkenheimer P, Schneider U, Brand R, Loidl A (1999) In: Tokuyama M, Oppenheim I (eds) Slow dynamics in complex systems: Eighth Tohwa University International Symposium. AIP, New York, AIP Conf Proc 469:433Google Scholar
  32. 32.
    Schönhals A, Kremer F, Schlosser E (1991) Phys Rev Lett 67:999CrossRefPubMedGoogle Scholar
  33. 33.
    Schönhals A, Kremer F, Hofmann A, Fischer EW, Schlosser E (1993) Phys Rev Lett 70:3459CrossRefPubMedGoogle Scholar
  34. 34.
    Schönhals A, Kremer F, Stickel F (1993) Phys Rev Lett 71:4096CrossRefPubMedGoogle Scholar
  35. 35.
    Schönhals A, Kremer F, Schlosser E (1993) Progr Colloid Polym Sci 91:39CrossRefGoogle Scholar
  36. 36.
    Schönhals A, Kremer F, Hofmann A, Fischer EW (1993) Phys A 201:263CrossRefGoogle Scholar
  37. 37.
    Stickel F, Fischer EW, Schönhals A, Kremer F (1994) Phys Rev Lett 73:293632, b. Stickel F, Fischer EW, Richert R (1995) J Chem Phys 102:6521Google Scholar
  38. 38.
    Hofmann A, Kremer F, Fischer EW, Schönhals A (1994) In: Richert R, Blumen A (eds) Disorder effects on relaxational processes. Springer, Berlin, Chap. 10:309Google Scholar
  39. 39.
    Vogel H (1921) Phys Z 22:645Google Scholar
  40. 40.
    Fulcher GS (1923) J Am Ceram Soc 8:339CrossRefGoogle Scholar
  41. 41.
    Tammann G, Hesse W (1926) Z Anorg Allg Chem 156:245CrossRefGoogle Scholar
  42. 42.
    Angell CA (1985) In: Ngai KL, Wright GB (eds) Relaxations in complex systems. NRL, Washington, DC: 3Google Scholar
  43. 43.
    Kauzmann W (1942) Rev Mod Phys 14:12CrossRefGoogle Scholar
  44. 44.
    Kauzmann W (1948) Chem Rev 43:219CrossRefGoogle Scholar
  45. 45.
    Gibbs JH, DiMarzio EA (1958) J Chem Phys 28:373CrossRefGoogle Scholar
  46. 46.
    Hecksher T, Nielsen AI, Olsen NB, Dyre JC (2008) Nat Phys 4(9):737–741CrossRefGoogle Scholar
  47. 47.
    Davidson DW, Cole RH (1951) J Chem Phys 19:1484CrossRefGoogle Scholar
  48. 48.
    Poley JPh (1955) J Appl Sci B4:337Google Scholar
  49. 49.
    Angell CA (1997) Physica D 107:122CrossRefGoogle Scholar
  50. 50.
    Stillinger FH (1995) Science 267:1935CrossRefPubMedGoogle Scholar
  51. 51.
    Debenedetti PG, Stillinger FH (2000) Nature 410:259CrossRefGoogle Scholar
  52. 52.
    Adam G, Gibbs JH (1965) J Chem Phys 43:139CrossRefGoogle Scholar
  53. 53.
    Doolittle AK (1951) J Appl Phys 22:1471CrossRefGoogle Scholar
  54. 54.
    Cohen MH, Turnbull D (1959) J Chem Phys 31:1164CrossRefGoogle Scholar
  55. 55.
    Cohen MH, Grest GS (1979) Phys Rev B 20:1077CrossRefGoogle Scholar
  56. 56.
    Donth E, Hempel E, Schick Ch (2000) J Phys Cond Mat 12:L281CrossRefGoogle Scholar
  57. 57.
    Donth E, Huth H, Beiner M (2001) J Phys: Cond Mat 13:L451Google Scholar
  58. 58.
    Kirkpatrick TR, Tirumalai D (1989) Phys Rev A 40:1045CrossRefGoogle Scholar
  59. 59.
    Waterton SCJ (1932) Soc Glass Technol 16:244Google Scholar
  60. 60.
    Mauro JC, Yue Y, Ellison AJ, Gupta PK, Allan DC (2009) PNAS 106(47):19780–19784CrossRefPubMedGoogle Scholar
  61. 61.
    Souletie H, Bertrand D (1991) J Phys (Paris) 51:1627Google Scholar
  62. 62.
    Dyre JC (2006) Rev Mod Phys 78(3):953–972CrossRefGoogle Scholar
  63. 63.
    Dyre JC, Olsen NB (2004) PRE 69:042501CrossRefPubMedGoogle Scholar
  64. 64.
    Dyre JC, Olsen NB, Christensen T (1996) PRB 53:2171CrossRefGoogle Scholar
  65. 65.
    Hecksher T, Dyre JC (2015) J Non-Cryst Solids 407:14CrossRefGoogle Scholar
  66. 66.
    Leutheuser E (1984) Phys Rev A 29:2765CrossRefGoogle Scholar
  67. 67.
    Bengtzelius U, Götze W, Sjölander A (1984) J Phys C 17:5915CrossRefGoogle Scholar
  68. 68.
    Götze W (1985) Z Phys B 60:195CrossRefGoogle Scholar
  69. 69.
    Götze W, Sjögren L (1992) Rep Prog Phys 55:241CrossRefGoogle Scholar
  70. 70.
    Bartoš J, Iskrová M, Köhler M, Wehn R, Šauša O, Lunkenheimer P, Krištiak J, Loidl A (2011) Eur Phys J E 34:104CrossRefPubMedGoogle Scholar
  71. 71.
    Schneider U, Brand R, Lunkenheimer P, Loidl A (2000) PRL 84:5560CrossRefGoogle Scholar
  72. 72.
    Lunkenheimer P, Wehn R, Riegger Th, Loidl A (2002) J Non-Cryst Solids 307–310:336–344CrossRefGoogle Scholar
  73. 73.
    Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Contemp Phys 41:15CrossRefGoogle Scholar
  74. 74.
    Novikov VN, Sokolov AP (2015) PRE 92:062304CrossRefPubMedGoogle Scholar
  75. 75.
    Lunkenheimer P, Kastner S, Köhler M, Loidl A (2010) PRE 81:051504CrossRefPubMedGoogle Scholar
  76. 76.
    Lunkenheimer P, Wehn R, Köhler M, Loidl A (2018) J Non-Cryst Solids 492:63Google Scholar
  77. 77.
    Schönhals A (1995) Habilitation thesis. Technical University BerlinGoogle Scholar
  78. 78.
    Hofmann A (1993), Dissertation, University MainzGoogle Scholar
  79. 79.
    Schönhals A (2001) EPL 56:815–821CrossRefGoogle Scholar
  80. 80.
    Kremer F (ed) (2014) Dynamics in geometrical confinement. Springer, BerlinGoogle Scholar
  81. 81.
    Lunkenheimer P, Loidl A (2002) Chem Phys 284:205–219CrossRefGoogle Scholar
  82. 82.
    Lunkenheimer P, Loidl A (2002) Glassy dynamics beyond the alpha-relaxation. In: Kremer F, Schönhals A (eds) Broadband Dielectric Spectroscopy. Springer, Berlin Chapter 5Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molekülphysik, Peter-Debye-Institut für Physik der weichen MaterieUniversität LeipzigLeipzigGermany
  2. 2.University of Augsburg, Experimental Physics VAugsburgGermany

Personalised recommendations