Advertisement

Alterations of the Extracellular Matrix of the Connective Tissue in Inguinal Herniogenesis

  • Gemma Pascual
  • Juan M. Bellón
Chapter

Abstract

Inguinal hernia is still today one of the most common procedures performed by general surgeons. The techniques for abdominal wall surgical repair are around 20% of all general surgery procedures.

The etiology and pathogenesis are complex, with multiple factors contributing to its development, including individual predisposition and certain birth defects. The development level of hernias of the abdominal wall and its recurrence has been shown to occur more frequently in patients with connective tissue disorders, such as patients with aortic aneurysm, Marfan and Ehlers-Danlos syndrome, and cutis laxa, among other diseases. The etiology of inguinal hernia involves changes in the expression of different extracellular matrix constituents, affecting especially at the level of the transversalis fascia (TF), such as collagen, elastic component, and metalloproteinases (MMPs).

This review paper aims to collect all the experience and previous results of our group in the study of the constituents of the abdominal wall extracellular matrix of connective tissue, in the development of inguinal herniogenesis.

In previous studies, we were able to demonstrate the overexpression of MMP-2 in the transversalis fascia of young patients with direct inguinal hernia correlated with the overexpression of TGF-beta1 showing an attempt to counterbalance the enhanced matrix degradative process observed in these patients. At the level of the elastic constituents of the TF, direct inguinal hernia patients show low levels of tropoelastin (TE), precursor to the elastin molecule and lysyl oxidase like-1 (LOXL-1), an enzyme involved in cross-linking of elastin. In contrast, these patients showed significantly higher elastase expression, main enzyme involved in the process of degradation of elastin. Significantly lower LOXL-1 mRNA levels were also observed in cells obtained from the TF of patients with direct inguinal hernia.

All these alterations highlight a disorder at the level of the extracellular matrix of connective tissue in patients with inguinal hernias, which together with other exogenous factors would partly explain the genesis of this pathology.

References

  1. 1.
    Rutkow IM. Demographic and socioeconomic aspects of hernia repair in the United States. Surg Clin North Am. 2003;83:1045–51.CrossRefPubMedGoogle Scholar
  2. 2.
    Zoller B, Ji J, Sundquist J, Sundquist K. Shared and nonshared familial susceptibility to surgically treated inguinal hernia, femoral hernia, incisional hernia, epigastric hernia, and umbilical hernia. Am Coll Surg. 2013;217:289–99.CrossRefGoogle Scholar
  3. 3.
    Burcharth J, Pommergaard H, Rosenberg J. The inheritance of groin hernia: a systematic review. Hernia. 2013;17:183–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Sezer S, Simsek N, Celik HT, et al. Association of collagen type I alpha 1 gene polymorphism with inguinal hernia. Hernia. 2014;18:507–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Jorgenson E, Makki N, Shen L, et al. A genome-wide association study identifies four novel susceptibility loci underlying inguinal hernia. Nat Commun. 2015;21:10130.CrossRefGoogle Scholar
  6. 6.
    Schumpelick V, Treutner KH, Arlt G. Inguinal hernia repair in adults. Lancet. 1994;6:375–9.CrossRefGoogle Scholar
  7. 7.
    Pans A, Pierard GE, Albert A, Desaive C. Adult groin hernias: new insight into their biomechanical characteristics. Eur J Clin Investig. 1997;27:863–8.CrossRefGoogle Scholar
  8. 8.
    Henriksen NA, Yadete DH, Sorensen LT, Agren MS, Jorgensen LN. Connective tissue alteration in abdominal wall hernia. Br J Surg. 2011;98:210–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Mégarbané A, Hanna N, Chouery E, Jalkh N, Mehawej C, Boileau C. Marfanoid habitus, inguinal hernia, advanced bone age, and distinctive facial features: a new collagenopathy? Am J Med Genet. 2012;158:1185–9.CrossRefGoogle Scholar
  10. 10.
    Uitto J, Perejda A, editors. Connective tissue diseases: molecular pathology of the extracellular matrix. New York: Marcel Dekker; 1986.Google Scholar
  11. 11.
    Henriksen NA, Sorensen LT, Bay-Nielsen M, et al. Direct and recurrent inguinal hernias are associated with ventral hernia repair: a database study. World J Surg. 2013;37:306–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Read RC. A review: the role of protease-antiprotease imbalance in the pathogenesis of herniation and abdominal aortic aneurysm in certain smokers. Postgrad Gen Surg. 1992;4:161–5.Google Scholar
  13. 13.
    Read RC. Metabolic factors contributing to herniation. Hernia. 1998;2:51–5.CrossRefGoogle Scholar
  14. 14.
    Read RC. Inguinal herniation in the adult, defect or disease: a surgeon’s odyssey. Hernia. 2004;8:296–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Jansen PL, Mertens PR, Klinge U, Schumpelick V. The biology of hernia formation. Surgery. 2004;136:1–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Friedman DW, Boyd CD, Norton P, Greco RS, Boyarsky AH, Mackenzie JW, et al. Increases in type III collagen gene expression and protein synthesis in patients with inguinal hernias. Ann Surg. 1993;218:754–60.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rosch R, Klinge U, Si Z, Junage K, Klosterhalfen B, Schumpelick V. A role of the collagen I/III and MMP-1/13 genes in primary inguinal hernia. BMC Med Genet. 2002;3:2.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pascual G, Corrales C, Gómez-Gil V, Buján J, Bellón JM. TGF-beta1 overexpression in the transversalis fascia of patients with direct inguinal hernia. Eur J Clin Investig. 2007;37:516–21.CrossRefGoogle Scholar
  19. 19.
    Pascual G, Rodríguez M, Mecham RP, Sommer P, Buján J, Bellón JM. Lysyl oxidase like-1 dysregulation and its contribution to direct inguinal hernia. Eur J Clin Investig. 2009;39:328–37.CrossRefGoogle Scholar
  20. 20.
    Fleischmajer R. Collagen fibrillogenesis: a mechanism of structural biology. J Invest Dermatol. 1986;87:553–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Bellón JM, Buján J, Honduvilla NG, Jurado F, Gimeno MJ, Turnay J, Olmo N, Lizarbe MA. Study of biochemical substrate and role of metalloproteinases in fascia transversalis from hernial processes. Eur J Clin Investig. 1997;27:510–6.CrossRefGoogle Scholar
  22. 22.
    Wagh PV, Leverich AP, Sun CN, White HJ, Read RC. Direct inguinal herniation in men: a disease of collagen. J Surg Res. 1974;17:425–33.CrossRefPubMedGoogle Scholar
  23. 23.
    Kadler KE, Baldock C, Bella J, et al. Collagen at a glance. J Cell Sci. 2007;120:1955–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Casanova AB, Trindade EN, Trindade MR. Collagen in the transversalis fascia of patients with indirect inguinal hernia: a case-control study. Am J Surg. 2009;198:1–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Meyer AL, Berger E, Monteiro O Jr, Alonso PA, Stavale JN, Gonçalves MP. Quantitative and qualitative analysis of collagen types in the fascia transversalis of inguinal hernia patients. Arq Gastroenterol. 2007;44:230–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Rodrigues Junior AJ, Rodrigues CJ, da Cunha AC, Jin Y. Quantitative analysis of collagen and elastic fibers in the transversalis fascia in direct and indirect inguinal hernia. Rev Hosp Clin Fac Med Sao Paulo. 2002;57:265–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Kureshi A, Vaiude P, Nazhat SN, Petrie A, Brown RA. Matrix mechanical properties of transversalis fascia in inguinal herniation as a model for tissue expansion. J Biomech. 2008;41:3462–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Asp Med. 2008;29:290–308.CrossRefGoogle Scholar
  29. 29.
    Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;15(69):562–73.CrossRefGoogle Scholar
  30. 30.
    Donahue TR, Hiatt JR, Busuttil RW. Collagenase and surgical disease. Hernia. 2006;10:478–85.CrossRefPubMedGoogle Scholar
  31. 31.
    Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200:448–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Tharappel JC, Bower CE, Whittington Harris J, et al. Doxycycline administration improves fascial interface in hernia repair. J Surg Res. 2014;190:692–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Tharappel JC, Harris JW, Zwischenberger BA, et al. Doxycycline shows dose-dependent changes in hernia repair strength after mesh repair. Surg Endosc. 2016;30:2016–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Klinge U, Zheng H, Si Z, Schumpelick V, Bhardwaj RS, Muys L, Klosterhalfen B. Expression of the extracellular matrix proteins collagen I, collagen III and fibronectin and matrix metalloproteinase-1 and -13 in the skin of patients with inguinal hernia. Eur Surg Res. 1999;31:480–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Klinge U, Zheng H, Si ZY, Schumpelick V, Bhardwaj R, Klosterhalfen B. Synthesis of type I and III collagen, expression of fibronectin and matrix metalloproteinases-1 and -13 in hernia sac of patients with inguinal hernia. Int J Surg Investig. 1999;1:219–27.PubMedGoogle Scholar
  36. 36.
    Aren A, Gökçe AH, Gökçe FS, Dursun N. Roles of matrix metalloproteinases in the etiology of inguinal hernia. Hernia. 2011;15:667–71.CrossRefPubMedGoogle Scholar
  37. 37.
    Antoniou SA, Antoniou GA, Granderath FA, Simopoulos C. The role of matrix metalloproteinases in the pathogenesis of abdominal wall hernias. Eur J Clin Investig. 2009;39:953–9.CrossRefGoogle Scholar
  38. 38.
    Smigielski J, Kołomecki K, Ziemniak P, Drozda R, Amsolik M, Kuzdak K. Degradation of collagen by metalloproteinase 2 in patients with abdominal hernias. Eur Surg Res. 2009;42:118–21.CrossRefPubMedGoogle Scholar
  39. 39.
    Bellón JM, Bajo A, Gª-Honduvilla N, Gimeno MJ, Pascual G, Guerrero A, Buján J. Fibroblasts from the transversalis fascia of young patients with direct inguinal hernias show constitutive MMP-2 overexpression. Ann Surg. 2001;233:287–91.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pascual G, Rodríguez M, Gómez-Gil V, Trejo C, Buján J, Bellón JM. Active matrix metalloproteinase-2 upregulation in the abdominal skin of patients with direct inguinal hernia. Eur J Clin Investig. 2010;40:1113–21.CrossRefGoogle Scholar
  41. 41.
    Roberts AB, Hline UI, Flanders KC, Sporn MB. Transforming growth factor–β. Mayor role in regulation of extracellular matrix. Ann N Y Acad Sci. 1990;580:225–30.CrossRefPubMedGoogle Scholar
  42. 42.
    Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials. 1997;18:1201–25.CrossRefPubMedGoogle Scholar
  43. 43.
    Herndon DN, Nguyen TT, Gilpin DA. Growth factors local and systemic. Arch Surg. 1993;128:1227–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Kobashi T, Hattori S, Shinkai H. Matrix metalloproteinases-2 and 9 are secreted from human fibroblasts. Acta Derm Venereol. 2003;83:105–7.CrossRefGoogle Scholar
  45. 45.
    Puyramond A, Weitzman JB, Babiole E, Menashi S. Examining the relationship between the gelatinolytic balance and the invasive capacity of endothelial cells. J Cell Sci. 1999;112:1283–90.Google Scholar
  46. 46.
    Pascual G, Rodríguez M, Sotomayor S, Pérez-Köhler B, Bellón JM. Inflammatory reaction and neotissue maturation in the early host tissue incorporation of polypropylene prostheses. Hernia. 2012;16:697–707.CrossRefPubMedGoogle Scholar
  47. 47.
    Wagenseil JE, Mecham RP. New insights into elastic fiber assembly. Birth Defects Res C Embryo Today. 2007;81:229–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Mecham RP, Heusar JE. The elastic fibre. In: Hay ED, editor. Cell biology of the extracellular matrix. 2nd ed. New York: Plenum Press; 1991. p. 79–109.CrossRefGoogle Scholar
  49. 49.
    Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 2004;36:178–82.CrossRefPubMedGoogle Scholar
  50. 50.
    Vrhovski B, Weiss AS. Biochemistry of tropoelastin. Eur J Biochem. 1998;258:1–18.CrossRefPubMedGoogle Scholar
  51. 51.
    Rodrigues AJ, de Tolosa EM, de Carvalho CA. Electron microscopic study on the elastic and elastic related fibres in the human fascia transversalis at different ages. Gegenbaurs Morphol Jahrb. 1990;136:645–52.Google Scholar
  52. 52.
    Berliner S. Adult inguinal hernia: pathophysiology and repair. Surg Ann. 1983;15:307–29.Google Scholar
  53. 53.
    Szczesny W, Cerkaska K, Tretyn A, Dabrowiecki S. Etiology of inguinal hernia: ultrastructure of rectus sheath revisited. Hernia. 2006;10:266–71.CrossRefPubMedGoogle Scholar
  54. 54.
    Nikolov S, Beltschev B. Several ultrastructural peculiarities of the fascia transversalis in direct inguinal hernias of senile men. Anat Anz. 1990;170:265–72.PubMedGoogle Scholar
  55. 55.
    Deak SB, Ricotta JJ, Mariani TJ, Deak ST, Zatina MA, Mackenzie JW, Boyd CD. Abnormalities in the biosynthesis of type III procollagen in cultured skin fibroblasts from two patients with multiple aneurysms. Matrix. 1992;12:92–100.CrossRefPubMedGoogle Scholar
  56. 56.
    Nagase H, Ogata Y, Suzuki K, Enghild JJ, Salvesen G. Substrate specificities and activation mechanisms of matrix metalloproteinases. Biochem Soc Trans. 1991;19:715–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Antoniou GA, Tentes IK, Antoniou SA, Simopoulos C, Lazarides MK. Matrix metalloproteinase imbalance in inguinal hernia formation. J Invest Surg. 2011;24:145–50.CrossRefPubMedGoogle Scholar
  58. 58.
    Overall CM, Wrana JL, Sodek J. Transcriptional and post-transcriptional regulation of 72-KDa gelatinase/type IV collagenase by transforming growth factor-β1 in human fibroblasts. J Biol Chem. 1991;266:14064–71.PubMedGoogle Scholar
  59. 59.
    Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y. Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-β1 release. Biochem J. 1997;322:809–14.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Korenkov M, Yuecel N, Koebke J, Schierholz J, Morsczeck C, Tasci I, Neugebauer EA, Nagelschmidt M. Local administration of TGF-beta1 to reinforce the anterior abdominal wall in a rat model of incisional hernia. Hernia. 2005;9:252–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Franz MG, Kuhn MA, Nguyen K, Wang X, Ko F, Wright TE, Robson MC. Transforming growth factor beta(2) lowers the incidence of incisional hernias. J Surg Res. 2001;97:109–16.CrossRefPubMedGoogle Scholar
  62. 62.
    Junqueira C, Hwan J, Junqueira A. Elastin (ELN) gene point mutation in patients with inguinal hernia. Genet Mol Biol. 2006;29:45–6.CrossRefGoogle Scholar
  63. 63.
    Gonçalves R de O, de Moraes e Silva E, Lopes Filho G de J. Immunohistochemical evaluation of fibrillar components of the extracellular matrix of transversalis fascia and anterior abdominal rectus sheath in men with inguinal hernia. Rev Col Bras Cir. 2014;41:023–029.Google Scholar
  64. 64.
    Kayaoglu HA, Hazinedaroglu SM, Bulent Erkek A, et al. Comparison of the plasma and hernia sac tissue copper levels in direct and indirect inguinal hernia patients. Biol Trace Elem Res. 2005;108:53–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Ozdemir S, Ozis ES, Gulpinar K, et al. The value of copper and zinc levels in hernia formation. Eur J Clin Investig. 2011;41:285–90.CrossRefGoogle Scholar
  66. 66.
    Lehnert B, Wadouh F. High coincidence of inguinal hernias and abdominal aortic aneurysms. Ann Vasc Surg. 1992;6:134–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Cannon DJ, Read RC. Metastatic emphysema: a mechanism for acquiring inguinal herniation. Ann Surg. 1981;194:270–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine and Medical Specialties, Faculty of Medicine and Health SciencesNetworking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of AlcaláMadridSpain
  2. 2.Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health SciencesNetworking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of AlcaláMadridSpain

Personalised recommendations