Advertisement

Lessons from Knowledge on the Correlates of the Age of Onset of Physical Illness

  • Giovanni Fiorito
  • Carlotta Sacerdote
  • Paolo VineisEmail author
Chapter

Abstract

Epidemiological studies over the last century have highlighted that the risk of non-communicable diseases increases with age, and suggest that ageing can be considered a marker of the accumulation of exposure to modifiable risk factors. Recently, a strong association between chronological age and DNA methylation changes has been described. As a consequence, DNA methylation has been proposed as a biomarker of (un)healthy ageing.

In this chapter, we present different models of the environmental influences on disease risk, including the theory of “epigenetic memory in response to environmental stressors”, which has been proposed to describe the biological mechanisms linking exogenous and endogenous exposures to disease risk factors, DNA methylation dysregulation and ageing. Also, the concepts of “epigenetic clock”, “epigenetic drift” and epigenetic age acceleration are discussed.

We provide several examples from the literature supporting the proposed theories. Neither of the proposed paradigms appears to be entirely satisfactory to describe the onset of all non-communicable diseases. However, mutual interplay of these theories is likely to cover the complexity of the problem.

References

  1. Apter D, Vihko R. Early menarche, a risk factor for breast cancer, indicates early onset of ovulatory cycles. J Clin Endocrinol Metab. 1983;57:82–6.CrossRefGoogle Scholar
  2. Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer. 1954;8:1–12.CrossRefGoogle Scholar
  3. Beach SR, Dogan MV, Lei MK, Cutrona CE, Gerrard M, Gibbons FX, Simons RL, Brody GH, Philibert RA. Methylomic ageing as a window onto the influence of lifestyle: tobacco and alcohol use alter the rate of biological ageing. J Am Geriatr Soc. 2015;63:2519–25.CrossRefGoogle Scholar
  4. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin SY, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS, MuTHER Consortium, Dermitzakis ET, McCarthy MI, Mill J, Spector TD, Deloukas P. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 2012;8:e1002629.CrossRefGoogle Scholar
  5. Bodicoat DH, Schoemaker MJ, Jones ME, McFadden E, Griffin J, Ashworth A, Swerdlow AJ. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast Cancer Res. 2014;16:R18.CrossRefGoogle Scholar
  6. Brandt A, Bermejo JL, Sundquist J, Hemminki K. Age of onset in familial cancer. Ann Oncol. 2008;19:2084–8.CrossRefGoogle Scholar
  7. Breitling LP, Saum KU, Perna L, Schöttker B, Holleczek B, Brenner H. Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clin Epigenetics. 2016;8:21.CrossRefGoogle Scholar
  8. Cairns J. Cancer and the immortal strand hypothesis. Genetics. 2006;174:1069–72.CrossRefGoogle Scholar
  9. Carlos-Wallace FM, Zhang L, Smith MT, Rader G, Steinmaus C. Parental, in utero, and early-life exposure to benzene and the risk of childhood leukemia: a meta-analysis. Am J Epidemiol. 2016;183:1–14.CrossRefGoogle Scholar
  10. Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, Roetker NS, Just AC, Demerath EW, Guan W, Bressler J, Fornage M, Studenski S, Vandiver AR, Moore AZ, Tanaka T, Kiel DP, Liang L, Vokonas P, Schwartz J, Lunetta KL, Murabito JM, Bandinelli S, Hernandez DG, Melzer D, Nalls M, Pilling LC, Price TR, Singleton AB, Gieger C, Holle R, Kretschmer A, Kronenberg F, Kunze S, Linseisen J, Meisinger C, Rathmann W, Waldenberger M, Visscher PM, Shah S, Wray NR, McRae AF, Franco OH, Hofman A, Uitterlinden AG, Absher D, Assimes T, Levine ME, Lu AT, Tsao PS, Hou L, Manson JE, Carty CL, LaCroix AZ, Reiner AP, Spector TD, Feinberg AP, Levy D, Baccarelli A, van Meurs J, Bell JT, Peters A, Deary IJ, Pankow JS, Ferrucci L, Horvath S. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 2016;8:1844–65.CrossRefGoogle Scholar
  11. Colditz GA, Bohlke K, Berkey CS. Breast cancer risk accumulation starts early: prevention must also. Breast Cancer Res Treat. 2014;145:567–79.CrossRefGoogle Scholar
  12. Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, Myers RM, Absher D. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013;14:R102.CrossRefGoogle Scholar
  13. Demetriou CA, van Veldhoven K, Relton C, Stringhini S, Kyriacou K, Vineis P. Biological embedding of early-life exposures and disease risk in humans: a role for DNA methylation. Eur J Clin Investig. 2015;45:303–32.CrossRefGoogle Scholar
  14. Doll R, Peto R. Cigarette smoking and bronchial carcinoma: dose and time relationships among regular smokers and lifelong non-smokers. J Epidemiol Community Health. 1978;32:303–13.CrossRefGoogle Scholar
  15. Fantin R, Delpierre C, Dimeglio C, Lamy S, Barboza Solís C, Charles MA, Kelly-Irving M. Disentangling the respective roles of the early environment and parental BMI on BMI change across childhood: a counterfactual analysis using the Millennium Cohort Study. Prev Med. 2016;89:146–53.CrossRefGoogle Scholar
  16. Fisher JC, Hollomon JH. A hypothesis for the origin of cancer foci. Cancer. 1951;4:916–8.CrossRefGoogle Scholar
  17. Frank SA. Dynamics of cancer. Incidence, inheritance, and evolution. Princeton and Oxford: Princeton University Press; 2007.Google Scholar
  18. Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D, Di Blasio AM, Gentilini D, Vitale G, Collino S, Rezzi S, Castellani G, Capri M, Salvioli S, Franceschi C. Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell. 2012;11(6):1132–4.CrossRefGoogle Scholar
  19. Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276–92.CrossRefGoogle Scholar
  20. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.CrossRefGoogle Scholar
  21. Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3:639–49.CrossRefGoogle Scholar
  22. Guida F, Sandanger TM, Castagné R, Campanella G, Polidoro S, Palli D, Krogh V, Tumino R, Sacerdote C, Panico S, Severi G, Kyrtopoulos SA, Georgiadis P, Vermeulen RC, Lund E, Vineis P, Chadeau-Hyam M. Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Hum Mol Genet. 2015;24:2349–59.CrossRefGoogle Scholar
  23. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.CrossRefGoogle Scholar
  24. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.CrossRefGoogle Scholar
  25. Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging. 2015;7:1130–42.CrossRefGoogle Scholar
  26. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schönfels W, Ahrens M, Heits N, Bell JT, Tsai PC, Spector TD, Deloukas P, Siebert R, Sipos B, Becker T, Röcken C, Schafmayer C, Hampe J. Obesity accelerates epigenetic ageing of human liver. Proc Natl Acad Sci. 2014;111:15538–43.CrossRefGoogle Scholar
  27. Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, Di Blasio AM, Giuliani C, Tung S, Vinters HV, Franceschi C. Accelerated epigenetic ageing in Down syndrome. Aging Cell. 2015a;14:491–5.CrossRefGoogle Scholar
  28. Horvath S, Pirazzini C, Bacalini MG, Gentilini D, Di Blasio AM, Delledonne M, Mari D, Arosio B, Monti D, Passarino G, De Rango F, D’Aquila P, Giuliani C, Marasco E, Collino S, Descombes P, Garagnani P, Franceschi C. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging. 2015b;7:1159–70.CrossRefGoogle Scholar
  29. Horvath S, Langfelder P, Kwak S, Aaronson J, Rosinski J, Vogt TF, Eszes M, Faull RL, Curtis MA, Waldvogel HJ, Choi OW, Tung S, Vinters HV, Coppola G, Yang XW. Huntington’s disease accelerates epigenetic ageing of human brain and disrupts DNA methylation levels. Aging. 2016;8:1485–512.CrossRefGoogle Scholar
  30. Javed R, Chen W, Lin F, Liang H. Infant’s DNA methylation age at birth and epigenetic ageing accelerators. Biomed Res Int. 2016;2016:4515928.CrossRefGoogle Scholar
  31. Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human ageing. Aging Cell. 2015;14:924–32.CrossRefGoogle Scholar
  32. Joubert BR, den Dekker HT, Felix JF, Bohlin J, Ligthart S, Beckett E, Tiemeier H, van Meurs JB, Uitterlinden AG, Hofman A, Håberg SE, Reese SE, Peters MJ, Andreassen BK, Steegers EA, Nilsen RM, Vollset SE, Midttun Ø, Ueland PM, Franco OH, Dehghan A, de Jongste JC, Wu MC, Wang T, Peddada SD, Jaddoe VW, Nystad W, Duijts L, London SJ. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. 2016a;7:10577.CrossRefGoogle Scholar
  33. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu CJ, Küpers LK, Oh SS, Hoyo C, Gruzieva O, Söderhäll C, Salas LA, Baïz N, Zhang H, Lepeule J, Ruiz C, Ligthart S, Wang T, Taylor JA, Duijts L, Sharp GC, Jankipersadsing SA, Nilsen RM, Vaez A, Fallin MD, Hu D, Litonjua AA, Fuemmeler BF, Huen K, Kere J, Kull I, Munthe-Kaas MC, Gehring U, Bustamante M, Saurel-Coubizolles MJ, Quraishi BM, Ren J, Tost J, Gonzalez JR, Peters MJ, Håberg SE, Xu Z, van Meurs JB, Gaunt TR, Kerkhof M, Corpeleijn E, Feinberg AP, Eng C, Baccarelli AA, Benjamin Neelon SE, Bradman A, Merid SK, Bergström A, Herceg Z, Hernandez-Vargas H, Brunekreef B, Pinart M, Heude B, Ewart S, Yao J, Lemonnier N, Franco OH, Wu MC, Hofman A, McArdle W, Van der Vlies P, Falahi F, Gillman MW, Barcellos LF, Kumar A, Wickman M, Guerra S, Charles MA, Holloway J, Auffray C, Tiemeier HW, Smith GD, Postma D, Hivert MF, Eskenazi B, Vrijheid M, Arshad H, Antó JM, Dehghan A, Karmaus W, Annesi-Maesano I, Sunyer J, Ghantous A, Pershagen G, Holland N, Murphy SK, DeMeo DL, Burchard EG, Ladd-Acosta C, Snieder H, Nystad W, Koppelman GH, Relton CL, Jaddoe VW, Wilcox A, Melén E, London SJ. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016b;98(4):680–96.CrossRefGoogle Scholar
  34. Juarez PD, Matthews-Juarez P, Hood DB, Im W, Levine RS, Kilbourne BJ, Langston MA, Al-Hamdan MZ, Crosson WL, Estes MG, Estes SM, Agboto VK, Robinson P, Wilson S, Lichtveld MY. The public health exposome: a population-based, exposure science approach to health disparities research. Int J Environ Res Public Health. 2014;11:12866–95.CrossRefGoogle Scholar
  35. Knight AK, Craig JM, Theda C, Bækvad-Hansen M, Bybjerg-Grauholm J, Hansen CS, Hollegaard MV, Hougaard DM, Mortensen PB, Weinsheimer SM, Werge TM, Brennan PA, Cubells JF, Newport DJ, Stowe ZN, Cheong JL, Dalach P, Doyle LW, Loke YJ, Baccarelli AA, Just AC, Wright RO, Téllez-Rojo MM, Svensson K, Trevisi L, Kennedy EM, Binder EB, Iurato S, Czamara D, Räikkönen K, Lahti JM, Pesonen AK, Kajantie E, Villa PM, Laivuori H, Hämäläinen E, Park HJ, Bailey LB, Parets SE, Kilaru V, Menon R, Horvath S, Bush NR, LeWinn KZ, Tylavsky FA, Conneely KN, Smith AK. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 2016;17:206.CrossRefGoogle Scholar
  36. Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S. DNA methylation age of blood predicts future onset of lung cancer in the women’s health initiative. Aging (Albany NY). 2015a;7(9):690–700.CrossRefGoogle Scholar
  37. Levine ME, Lu AT, Bennett DA, Horvath S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging. 2015b;7:1198–211.CrossRefGoogle Scholar
  38. Levine ME, Lu AT, Chen BH, Hernandez DG, Singleton AB, Ferrucci L, Bandinelli S, Salfati E, Manson JE, Quach A, Kusters CD, Kuh D, Wong A, Teschendorff AE, Widschwendter M, Ritz BR, Absher D, Assimes TL, Horvath S. Menopause accelerates biological ageing. Proc Natl Acad Sci U S A. 2016;113:9327–32.CrossRefGoogle Scholar
  39. Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE, Gibson J, Redmond P, Cox SR, Pattie A, Corley J, Taylor A, Murphy L, Starr JM, Horvath S, Visscher PM, Wray NR, Deary IJ. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol. 2015a;44:1388–96.CrossRefGoogle Scholar
  40. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR, Pattie A, Corley J, Murphy L, Martin NG, Montgomery GW, Feinberg AP, Fallin MD, Multhaup ML, Jaffe AE, Joehanes R, Schwartz J, Just AC, Lunetta KL, Murabito JM, Starr JM, Horvath S, Baccarelli AA, Levy D, Visscher PM, Wray NR, Deary IJ. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015b;16:25.CrossRefGoogle Scholar
  41. Martin GM. Epigenetic drift in ageing identical twins. Proc Natl Acad Sci. 2005;102:10413–4.CrossRefGoogle Scholar
  42. McCrory C, O’Leary N, Fraga S, Ribeiro AI, Barros H, Kartiosuo N, Raitakari O, Kivimäki M, Vineis P, Layte R, Lifepath Consortium. Socioeconomic differences in children’s growth trajectories from infancy to early adulthood: evidence from four European countries. J Epidemiol Community Health. 2017;71(10):981–9.CrossRefGoogle Scholar
  43. Meier-Abt F, Bentires-Alj M. How pregnancy at early age protects against breast cancer. Trends Mol Med. 2014;20:143–53.CrossRefGoogle Scholar
  44. Nagy R, Sweet K, Eng C. Highly penetrant hereditary cancer syndromes. Oncogene. 2004;23(23):6445–70.CrossRefGoogle Scholar
  45. Nevalainen T, Kananen L, Marttila S, Jylhävä J, Mononen N, Kähönen M, Raitakari OT, Hervonen A, Jylhä M, Lehtimäki T, Hurme M. Obesity accelerates epigenetic ageing in middle-aged but not in elderly individuals. Clin Epigenetics. 2017;9:20.CrossRefGoogle Scholar
  46. Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics. 2016;8:64.CrossRefGoogle Scholar
  47. Peto R, Darby S, Deo H, Silcocks P, Whitley E, Doll R. Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ. 2000;321:323–9.CrossRefGoogle Scholar
  48. Peto R, Gray R, Brantom P, Grasso P. Effects on 4080 rats of chronic ingestion of N-nitrosodiethylamine or N-nitrosodimethylamine: a detailed dose-response study. Cancer Res. 1991;51:6415–51.PubMedGoogle Scholar
  49. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, Ritz B, Bandinelli S, Neuhouser ML, Beasley JM, Snetselaar L, Wallace RB, Tsao PS, Absher D, Assimes TL, Stewart JD, Li Y, Hou L, Baccarelli AA, Whitsel EA, Horvath S. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging. 2017;9:419–46.PubMedPubMedCentralGoogle Scholar
  50. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD. Human ageing-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20:434–9.CrossRefGoogle Scholar
  51. Schöllnberger H, Beerenwinkel N, Hoogenveen R, Vineis P. Cell selection as driving force in lung and colon carcinogenesis. Cancer Res. 2010;70(17):6797–803.CrossRefGoogle Scholar
  52. Simpkin AJ, Hemani G, Suderman M, Gaunt TR, Lyttleton O, Mcardle WL, Ring SM, Sharp GC, Tilling K, Horvath S, Kunze S, Peters A, Waldenberger M, Ward-Caviness C, Nohr EA, Sørensen TI, Relton CL, Smith GD. Prenatal and early life influences on epigenetic age in children: a study of mother-offspring pairs from two cohort studies. Hum Mol Genet. 2016;25:191–201.CrossRefGoogle Scholar
  53. Tan Q, Heijmans BT, Hjelmborg JV, Soerensen M, Christensen K, Christiansen L. Epigenetic drift in the ageing genome: a ten-year follow-up in an elderly twin cohort. Int J Epidemiol. 2016;45:1146–58.PubMedGoogle Scholar
  54. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 2010;20:440–6.CrossRefGoogle Scholar
  55. Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet. 2013;22:R7–R15.CrossRefGoogle Scholar
  56. Trichopoulos D, Lagiou P, Adami HO. Towards an integrated model for breast cancer aetiology: the crucial role of the number of mammary tissue-specific stem cells. Breast Cancer Res. 2005;7:13–7.CrossRefGoogle Scholar
  57. Vidal-Bralo L, Lopez-Golan Y, Mera-Varela A, Rego-Perez I, Horvath S, Zhang Y, Del Real Á, Zhai G, Blanco FJ, Riancho JA, Gomez-Reino JJ, Gonzalez A. Specific premature epigenetic ageing of cartilage in osteoarthritis. Aging. 2016;8:2222–31.CrossRefGoogle Scholar
  58. Vineis P. Exposomics: mathematics meets biology. Mutagenesis. 2015;30(6):719–22.PubMedGoogle Scholar
  59. Vineis P, Alavanja M, Buffler P, Fontham E, Franceschi S, Gao YT, Gupta PC, Hackshaw A, Matos E, Samet J, Sitas F, Smith J, Stayner L, Straif K, Thun MJ, Wichmann HE, Wu AH, Zaridze D, Peto R, Doll R. Tobacco and cancer: recent epidemiological evidence. J Natl Cancer Inst. 2004;96:99–106.CrossRefGoogle Scholar
  60. Vineis P, Schatzkin A, Potter JD. Models of carcinogenesis: an overview. Carcinogenesis. 2010;31(10):1703–9.CrossRefGoogle Scholar
  61. Vineis P, Chatziioannou A, Cunliffe VT, Flanagan JM, Hanson M, Kirsch-Volders M, Kyrtopoulos S. Epigenetic memory in response to environmental stressors. FASEB J. 2017;31:2241–51.CrossRefGoogle Scholar
  62. Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K, Wahl S, Colicino E, Trevisi L, Kloog I, Just AC, Vokonas P, Cyrys J, Gieger C, Schwartz J, Baccarelli AA, Schneider A, Peters A. Long-term exposure to air pollution is associated with biological ageing. Oncotarget. 2016;7:74510–25.CrossRefGoogle Scholar
  63. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jöckel KH, Erbel R, Mühleisen TW, Zenke M, Brümmendorf TH, Wagner W. Ageing of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014;15:R24.CrossRefGoogle Scholar
  64. Zannas AS, Arloth J, Carrillo-Roa T, Iurato S, Röh S, Ressler KJ, Nemeroff CB, Smith AK, Bradley B, Heim C, Menke A, Lange JF, Brückl T, Ising M, Wray NR, Erhardt A, Binder EB, Mehta D. Lifetime stress accelerates epigenetic ageing in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 2015;16:266.CrossRefGoogle Scholar
  65. Zykovich A, Hubbard A, Flynn JM, Tarnopolsky M, Fraga MF, Kerksick C, Ogborn D, MacNeil L, Mooney SD, Melov S. Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell. 2014;13:360–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Giovanni Fiorito
    • 1
  • Carlotta Sacerdote
    • 2
  • Paolo Vineis
    • 3
    • 4
    Email author
  1. 1.Italian Institute for Genomic Medicine, (IIGM, ex HuGeF)TurinItaly
  2. 2.Città della Salute e della Scienza University-Hospital and CPO-PiemonteTurinItaly
  3. 3.Italian Institute for Genomic MedicineTurinItaly
  4. 4.MRC-PHE Centre for Environment and Health, School of Public Health, Imperial CollegeLondonUK

Personalised recommendations