Advertisement

Adjuncts to Resuscitation

  • Ryan A. Lawless
  • Bryan A. Cotton
Chapter

Abstract

Damage control resuscitation has been increasingly adopted and practiced over the last decade. The concepts used are not new to this era of medicine but are novel in combination. This chapter will focus on adjuncts to damage control resuscitation (DCR) including massive transfusion protocols, the “other” tenets of damage control resuscitation, hypertonic saline, tranexamic acid, pharmacologic resuscitation, Factor VIIa, and prothrombin complex, and viscoelastic testing.

Keywords

Bleeding Hemorrhage Damage control resuscitation Massive transfusion Adjuncts 

References

  1. 1.
    Duchesne J, McSwain N, Cotton B, Hunt J, Dellavolpe J, Lafaro K, et al. Damage control resuscitation: the new face of damage control. J Trauma. 2010;69:976–90.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Shapiro M, Jenkins DS, Rotondo M. Damage control: collective review. J Trauma. 2000;49:969–78.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Holcomb J, Jenkins D, Rhee P, Johannigman J, Mahoney P, Mehta S, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62:307–10.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Cotton B, Reedy N, Hatch Q, Podbielski J, McNutt M, Albarado R, et al. Damage control resuscitation reduces volumes and improves survival in 390 damage control laparotomy patients. Ann Surg. 2011;254:598–605.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Duke M, Guidry C, Guice J, Stuke L, Marr A, Hunt J, et al. Restrictive fluid resuscitation in combination with damage control resuscitation: time for adaptation. J Trauma. 2012;73:674–8.CrossRefGoogle Scholar
  6. 6.
    Cannon WF. The preventative treatment of wound shock. JAMA. 1918;70:618.Google Scholar
  7. 7.
    Beecher H. Surgery in World War II, General surgery. In: Dot A, editor. Office of the Surgeon General Washington, DC: U.S. Government Printing Office; 1952:6.Google Scholar
  8. 8.
    Mapstone J, Roberts I, Evans P. Fluid resuscitation strategies: as systematic review of animal trials. J Trauma. 2003;55:571–89.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Dutton R, Mackenzie C, Scalea T. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma. 2002;52:1141–6.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Carrick M, Morrison C, Tapia N, Leonard J, Suliburk J, Norman M, et al. Intraoperative hypotensive resuscitation for patients undergoing laparotomy or thoracotomy for trauma: early termination of a randomized prospective clinical trial. J Trauma. 2016;80:886–96.CrossRefGoogle Scholar
  11. 11.
    Duchesne J, Kaplan L, Balogh Z, Malbrain M. Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe hemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension. Anaesthesiology Intensive Therapy. 2015;47:143–55.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wiggers C. Physiology of shock. New York: Commonwealth Fund; 1950.Google Scholar
  13. 13.
    Shires G, Colin D, Carrico J, Lightfoot S. Fluid therapy in hemorrhagic shock. Arch Surg. 1964;88:688–93.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Committee on Trauma, American College of Surgeons. ATLS: advanced trauma life support: student course manual. 9th ed. Chicago, Il: American College of Surgeons; 2012.Google Scholar
  15. 15.
    Ng K, La C, Chan L. In vivo effect of haemodilution with saline on coagulation: a randomized controlled trial. Br J Anaesth. 2002;88:475–80.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Walker J, Criddle L. Pathophysiology and management of abdominal compartment syndrome. Am J Crit Care. 2003;12:367–71.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Rodas E, Malhotra A, Chhitwal R, Aboutanos M, Duane T, Ivatury R. Hyperacute abdominal compartment syndrome: an unrecognized complication of massive intraoperative resuscitation for extra-abdominal injuries. Am Surg. 2005;71:977–81.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Cotton B, Guy J, Morris J, Abumrad N. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock. 2006;26:115–21.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Schreiber M, Perkins J, Kiraly L, Underwood S, Wade C, Holcomb J. Early predictors of massive transfusion in combat casualties. J Am Coll Surg. 2007;205:541–5.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tieu B, Holcomb J, Schreiber M. Coagulopathy: its pathophysiology and treatment in the injured patient. World J Surg. 2007;31:1055–64.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Balogh Z, McKinely B, Cocanour C, Kozar R, Holcomb J, Ware D, Moore F. Secondary abdominal compartment syndrome is an elusive early complication of traumatic shock resuscitation. Am J Surg. 2002;184:538–43.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schreiber M. Coagulopathy in the trauma patient. Curr Opin Crit Care. 2005;11:590–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Stern S, Dronen S, Birrer P, Wang X. Effect of blood pressure on hemorrhage volume and survival in near-fatal hemorrhage model incorporating a vascular injury. Ann Emerg Med. 1993;22:155–63.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kowalenko T, Stern S, Dronen S, Wang X. Improved outcome with hypotensive resuscitation of uncontrolled hemorrhagic shock in a swine model. J Trauma. 1992;33:349–53.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Riddez L, Johnson L, Hahn R. Central and regional hemodynamics during crystalloid fluid therapy after uncontrolled intra-abdominal bleeding. J Trauma. 1998;44:443–9.CrossRefGoogle Scholar
  26. 26.
    Bickell W, Bruttig S, Millnamow G, O'Benar J, Wade C. The detrimental effects of intravenous crystalloid after aortotomy in swine. Surgery. 1991;110:529–36.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bickell W, Wall M, Pepe P, Martin R, Ginger V, Allen M, Mattox K. Immediate versus delayed resuscitation for hypotensive trauma patients with penetrating torso injuries. N Engl J Med. 1994;331:1105–9.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Capone A, Safar P, Stezoski W, Tisherman S, Peitzman A. Improved outcome with fluid restriction in treatment of uncontrolled hemorrhagic shock. J Am Coll Surg. 1995;180:49–56.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Schreiber M, Meier E, Tisherman S, Kerby J, Newgard C, Brasel K, et al. A controlled resuscitation strategy is feasible and safe in hypotensive trauma patients: results of a prospective randomized pilot trial. J Trauma. 2015;78:687–97.CrossRefGoogle Scholar
  30. 30.
    Wilson R, Mammen E, Walt A. Eight years if experience with massive blood transfusion. J Trauma. 1971;11:275–85.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    O'keeffe T, Refaai M, Tchorz K, Forestner J, Sarode R. A massive transfusion protocol to decrease blood component use and costs. Arch Surg. 2008;143:686–91.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Cotton B, Gunter O, Isbell J, Au B, Robertson A, Morris J, et al. Damage control hematology: impact of a defined exsanguination protocol on mortality and blood utilization. J Trauma. 2008;64:117–8.CrossRefGoogle Scholar
  33. 33.
    Cantle P, Cotton B. Prediction of massive transfusion. Crit Care Clin. 2017;33:71–84.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Holcomb J, Tilley B, Baraniuk S, Fox E, Wade C, Podbielski J, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 versus 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471–82.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Nunez T, Young P, Holcomb J, Cotton B. Creation, implementation, and maturation of a massive transfusion protocol for exsanguinating trauma patient. J Trauma. 2010;68:1498–505.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Riskin D, Tsai T, Riskin L, Hernandez-Boussard T, Purtill M, Maggio P, et al. Massive transfusion protocols: the role of aggressive resuscitation versus product ratio in mortality reduction. J Am Coll Surg. 2009;209:198–205.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Cannon J, Khan M, Raja A, Cohen M, Como J, Cotton B, et al. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma. 2017;82:605–17.CrossRefGoogle Scholar
  38. 38.
    Radwan Z, Bai Y, Matijevic N, del Junco D, McCarthy J, Wade C, et al. An emergency department thawed plasma protocol for severely injured patients. JAMA Surg. 2013;148:170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    American College of Surgeons Committee on Trauma (nd). ACS TQIP massive transfusion in trauma guidelines. ACS TQIP Best Practice Guidelines: https://www.facs.org/quality-programs/trauma/tqip/best-practice. Accessed 1 Nov 2017.
  40. 40.
    Cotton B, Dossett L, Au B, Nunez T, Robertson A, Young P. Room for (performance) improvement: provider-related factors associated with poor outcomes in massive transfusion. J Trauma. 2009;67:1004–12.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Baweezer M, Ahmed N, Izadi H, McFarlan A, Nathens A, Pavenski K. Compliance with massive transfusion protocol (MTP) impacts patient outcome. Injury. 2015;46:21–8.CrossRefGoogle Scholar
  42. 42.
    Cotton B, Haut E, Dossett L, Shafi S, Au B, Nunez T, et al. Multicenter validation of a simplified score to predict massive transfusion. J Trauma. 2010;69:S33–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Nunez T, Voskrensky I, Dossett L, et al. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009;66:346–52.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Nunez T, Cotton B. Transfusion therapy in hemorrhagic shock. Curr Opin Crit Care. 2009;15:536–41.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Meyer D, Vincent L, Fox E, O'Keeffe T, Inaba K, Bulger E, et al. Every minute counts: time to delivery of initial massive transfusion cooler and its impact on mortality. J Trauma Acute Care Surg. 2017;83:19–24.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Morrison J, Dubose J, Rasmussen T, Midwinter M. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147:113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant hemorrhage (CRASH-2): a randomized, placebo-controlled trial. Lancet. 2010;376:23–32.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Guerriero C, cairns J, Perel P, Shakur H, Roberts I. Cost effectiveness analysis of administering tranexamic acid to bleeding trauma patients using evidence from the CRASH-2 trial. PLoS One. 2011;6:e18987.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377:1096–101.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Napolitano L, Cohen K, Cotton B, Schreiber M, Moore E. Tranexamic acid in trauma: how should we use it? J Trauma. 2013;74:1575–86.CrossRefGoogle Scholar
  51. 51.
    Soloman C, Hagl C, Rahe-Meyer N. Time course of haemostatic effects of fibrinogen concentrate administration. Brit J Anaesth. 2013;110(6):947–56.CrossRefGoogle Scholar
  52. 52.
    Fenger-Eriksen C, Tonnesen E, Ingerslev J, Sorensen B. Mechanisms of hydroxyethyl starch-induced dilutional coagulopathy. J Thromb Haemost. 2009;7:1099–105.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Rahe-Meyer N, Soloman C, Hanke A, Schmidt D, Lmoerzer D, Hochleitner G, et al. Effects of fibrinogen concentrate as first-line therapy during major aortic replacement surgery. Anesthesiology. 2013;118:40–50.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Schochl H, Neinbauer U, Hofer G, Voelckel W, Jambor C, Scharbert G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wafaisade A, Lefering R, Maegele M, Brockamp T, Mutschler M, Lendemans S, et al. Administration of fibrinogen concentrate in exsanguinating trauma patients is associated with improved survival at 6 hours but not at discharge. J Trauma Acute Care Surg. 2013;74:387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Morrison J, Ross J, DuBose J, Jansen J, Midwinter M, Rasmussen T. Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury. JAMA Surg. 2013;148(3):218–25.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Holcomb J, Fox E, Zhang X, White N, Wade C, Cotton B, et al. Cryoprecipitate use in the PROMMTT study. J Trauma Acute Care Surg. 2013;75:S31–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Young P, Cotton B. A window of opportunity: the aggressive use of plasma in early resuscitation. Transfusion. 2011;51:1880–2.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Sarode R, Milling T, Refaai M, Mangione A, Schneider A, Durn B, Goldstein J. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation. 2013;128(11):1234–43.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Matsushima K, Benjamin E, Demetriades D. Prothrombin complex concentrate in trauma patients. Am J Surg. 2015;209:413–7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Quick J, Bartels A, Coughenour J, Barnes S. Experience with prothrombin complex for the emergent reversal of anticoagulation in rural geriatric trauma patients. Surgery. 2012;152:722–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Pati S, Matijevic N, Doursout M, Ko T, Cao Y, Deng X, et al. Protective effects of fresh frozen plasma on vascular endothelial permeability, coagulation, and resuscitation after hemorrhagic shock are time dependent and diminish between days 0 and 5 after thaw. J Trauma. 2010;69:S55–63.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Holcomb J. Damage control resuscitation. J Trauma. 2007;62:S36–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Franchini M, Lippi G, Guidi G. The use of recombinant activated factor VII in platelet-associated bleeding. Hematology. 2008;13:41–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Benharash P, Bongard F, Putnam B. Use of recombinant factor VIIa for adjunctive hemorrhage control in trauma and surgical patients. Am Surg. 2005;71:776–80.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Dutton R, Hess J, scalea T. Recombinant factor VIIa for hemorrhage control: early experience in critically ill trauma patients. J Clin Anesth. 2003;15:184–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Khan A, Parry J, Crowley W, McAllen K, Davis A, Bonnell B, Hoogeboom J. Recombinant factor VIIa for the treatment of severe postoperative and traumatic hemorrhage. Am J Surg. 2005;189:331–4.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Boffard K, Riou B, Warren B, Choong P, Rizoli S, Rossaint R, et al. Recombinant factor VIIa as adjunctive therapy for bleeding control in severely injured trauma patients: two parallel randomized, placebo-controlled, double-blinded clinical trials. J Trauma. 2005;59:8–15.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Raobaikady R, Redman J, Ball J, Maloney G, Grounds R. Use of activated recombinant coagulation factor VII in patients undergoing reconstruction surgery for traumatic fracture of pelvis or pelvis and acetabulum: a double-blind, randomized, placebo-controlled trial. Br J Anesth. 2005;94:586–91.CrossRefGoogle Scholar
  70. 70.
    Hauser, C., Boffard, K., Dutton, R., Bernard, G., Croce, M., Holcomb, J., … Group, C. S. Results of the CONTROL trial: efficacy and safety of recombinant activated factor VII in the management of refractory traumatic hemorrhage. J Trauma. 2010;69:489–500.CrossRefGoogle Scholar
  71. 71.
    Cossu A, Mura P, de Giudici L, Puddu D, Pasin L, Evangelista M, et al. Vasopressin in hemorrhagic shock: a systematic review and meta-analysis of randomized animal trials. BioMed Res Int. 2014;2014:9. epubGoogle Scholar
  72. 72.
    Errington E, Rocha E. Vasopressin clearance and secretion during haemorrhage in normal dogs and in dogs with experimental diabetes insipidus. J Physiol. 1972;227:395–418.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Forrest P. Vasopressin and shock. Anaesth Intensive Care. 2001;29:463–72.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Stadlbauer K, Wagner-Berger H, Raedler C, Voelckel W, Wenzel V, Krismer A, et al. Vasopressin, but not fluid resuscitation, enhances survival in a liver trauma model with uncontrolled and otherwise lethal hemorrhagic shock in pigs. Anesthesiology. 2003;98:699–704.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Cohn S. Potential benefit of vasopressin in resuscitation of hemorrhagic shock. J Trauma. 2007;62:S56–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Robin J, Oliver J, Landry D. Vasopressin deficiency in the syndrome of irreversible shock. J Trauma. 2003;54:S149–54.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Voelckel W, Raedler C, Wenzel V, Lindner K, Krismer A, Schmittinger C, et al. Arginine vasopressin, but not epinephrine, improves survival in uncontrolled hemorrhagic shock after liver trauma in pigs. Crit Care Med. 2003;31:1160–5.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Stadlbauer K, Wagner-Berger H, Krismer A, Voelckel W, Konigsrainer A, Lindner K, Wenzel V. Vasopressin improves survival in a porcine model of abdominal vascular injury. Crit Care. 2007;11:R81.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
  80. 80.
    Blaheta R, Cinatl J. Anti-tumor mechanisms if valproate: a novel role for an old drug. Med Res Rev. 2002;22:492–511.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 2000;19:1176–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Phiel C, Zhang F, Huang E, Guenther M, Lazar M, Klein P. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36,734–41.CrossRefGoogle Scholar
  83. 83.
    Berger S. Gene activation by histone and factor acetyltransferase. Curr Opin Cell Biol. 1999;11:336–41.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Chang K, Min K. Regulation of lifespan by histone deacetylase. Ageing Res Rev. 2002;1:313–26.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lin T, Alam H, Chen H, Britten-Webb J, Rhee P, Kirkpatrick J, Koustova E. Cardiac histones are substrates of histone deacetylase activity in hemorrhagic shock and resuscitation. Surgery. 2006;139:365–76.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Gonzalez E, Chen E, Munuve R, Mehrani T, Britten-Webb J, Nadel A, et al. Valproic acid prevents hemorrhage-associated lethality and affects the acetylation patterns of cardiac histones. Shock. 2006;25:395–401.CrossRefGoogle Scholar
  87. 87.
    Shultz C, Sailhamer E, Li Y, Liu B, Tabbara M, Butt M, et al. Surviving blood loss without fluid resuscitation. J Trauma. 2008;64:629–40.CrossRefGoogle Scholar
  88. 88.
    Alam H, Shuja F, Butt M, Duggan M, Li Y, Zacharias N, et al. Surviving blood loss without blood transfusion in a swine poly-trauma model. Surgery. 2009;146:325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Mazzoni M, Borgstrom P, Arfors K, Intaglietta M. Dynamic fluid redistribution in hyperosmolar resuscitation of hypovolemic hemorrhage. Am J Physiol. 1988;255(3):H629–37.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Duchesne J, Simms E, Guidry C, Duke M, Beeson E, McSwain N, Cotton B. Damage control immunoregulation: is there a role for low-volume hypertonic saline resuscitation in patients managed with damage control surgery? American. Surgeon. 2012;78:962–8.Google Scholar
  92. 92.
    Pascual J, Khawaja K, Chaudry P, Christou N. Hypertonic saline and the microcirculation. J Trauma. 2003;54(suppl):S133–40.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Deree J, de Campos TS, Loomis W, Hoyt D, Coimbra R. Hypertonic saline and pentoxifylline attenuates gut injury after hemorrhagic shock. Journal of Trauma. 2007;62:818–27.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Deree J, Martins J, Leedom A, Lamon B, Putnam J, de Campos T, et al. Hypertonic saline and pentoxifylline reduces hemorrhagic shock resuscitation-induced pulmonary inflammation through attenuation of neutrophil degranulation and proinflammatory mediator synthesis. J Trauma. 2007;62:104–11.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Rizoli S, Rhind S, Shek P, Inaba K, Filips D, Tien H, et al. The immunomodulatory effects of hypertonic saline resuscitation in patients sustaining traumatic hemorrhagic shock: a randomized, controlled, double-blinded trial. Ann Surg. 2006;243:47–57.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Attuwaybi B, Kozar R, Gates K, Moore-Olufemi S, Sato N, Weisbrodt N, Moore F. Hypertonic saline prevents inflammation, injury, and impaired intestinal transit after gut ischemia/reperfusion by inducing heme oxygenase-1 enzyme. J Trauma. 2004;56:749–58.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Attuwaybi B, Kozar R, Moore-Olufemi S, Sato N, Hassoun H, Weisbrodt N, Moore F. Heme oxygenase-1 induction by hemin protects against gut ischemia/reperfusion injury. J Surg Res. 2004;118:53–7.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Gonzalez E, Kozar R, Suliburk J, Weisborodt N, Mercer D, Moore F. Conventional dose hypertonic saline provides optimal gut protection and limits remote organ injury after gut ischemia reperfusion. J Trauma. 2006;61:66–73.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Harvin J, Mims M, Duchesne J, Cox C, Wade C, Holcomb J, Cotton B. Chasing 100%: the use of hypertonic saline to improve early primary fascial closure after damage control laparotomy. J Trauma. 2013;74:426–30.CrossRefGoogle Scholar
  100. 100.
    MacLeod J, Jynn M, McKenny M, Cohn S, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55:39–44.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Moore E, Moore F, Fabian T, Bernard A, Fulda G, Hoyt D. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable: the USA multicenter trial. J Am Coll Surg. 2009;208:1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Gonzalez E, Pieracci F, Moore E, Kashuk J. Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography. Semin Thromb Hemost. 2010;36:723–37.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Cotton B, Faz G, Hatch Q, Radwan Z, Podbielski J, Wade C, et al. Rapid thromboelastography delivers real-time results that predict transfusion within 1 hour of admission. J Trauma. 2011;71:407–17.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Holcomb J, Minei K, Scerbo M, Radwan Z, Wade C, Kozar R, et al. Admission rapid thromboelastography can replace conventional coagulation tests in the emergency department. Ann Surg. 2012;256:1–11.CrossRefGoogle Scholar
  105. 105.
    Pezold M, Moore E, Wohlauer M, Sauaia A, Gonzalez E, Banerjee A, Silliman C. Viscoelastic clot strength predicts coagulation-related mortality within 15 minutes. Surgery. 2012;151:48–54.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Gonzalez E, Moore E, Moore H, Chapman M, Chin T, Ghasabyan A, et al. Goal-directed hemostatic resuscitation of trauma induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016;263:1051–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Department of Surgery, Denver Health Medical CenterThe University of Colorado School of MedicineAuroraUSA
  2. 2.The Department of Surgery and the Center for Translational Injury ResearchThe McGovern Medical School at the University of Texas Health Science Center, Red Duke Trauma Institute at Memorial Hermann HospitalHoustonUSA

Personalised recommendations