On Nonlinear Waves in Media with Complex Properties

  • Jüri Engelbrecht
  • Andrus Salupere
  • Arkadi Berezovski
  • Tanel Peets
  • Kert Tamm
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 89)

Abstract

In nonlinear theories the axiom of equipresence requires all the effects of the same order to be taken account. In this paper the mathematical modelling of deformation waves in media is analysed involving nonlinear and dispersive effects together with accompanying phenomena caused by thermal or electrical fields. The modelling is based on principles of generalized continuum mechanics developed by G.A. Maugin. The analysis demonstrates the richness of models in describing the physical effects in media with complex properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the EU through the European Regional Development Fund (project TK 124), by the Estonian Research Council (Project IUT 33-7, IUT 33-24, PUT 434) and by the French-Estonian Parrot programme. J. Engelbrecht, A. Salupere and A. Berezovski are indebted to G.A. Maugin for supporting their visits to the University of Marie and Pierre Curie.

References

  1. Ablowitz MJ (2011) Nonlinear Dispersive Waves. Asymptotic Analysis and Solitons. Cambridge University Press, CambridgeGoogle Scholar
  2. Andersen SSL, Jackson AD, Heimburg T (2009) Towards a thermodynamic theory of nerve pulse propagation. Progr Neurobiol 88:104–113Google Scholar
  3. Berezovski A (2015) Nonlinear dispersive wave equations for microstructured solids. Proc Estonian Acad Sci 64(3):203–211Google Scholar
  4. Berezovski A, Engelbrecht J (2013) Thermoelastic waves in microstructured solids: Dual internal variables approach. Journal of Coupled Systems and Multiscale Dynamics 1:112–119Google Scholar
  5. Berezovski A, Engelbrecht J, Maugin GA (2008) Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, SingaporeGoogle Scholar
  6. Berezovski A, Engelbrecht J, Maugin GA (2011a) Generalized thermomechanics with dual internal variables. Archive of Applied Mechanics 81(2):229–240Google Scholar
  7. Berezovski A, Engelbrecht J, Maugin GA (2011b) Thermoelasticity with dual internal variables. Journal of Thermal Stresses 34(5–6):413–430Google Scholar
  8. Berezovski A, Engelbrecht J, Salupere A, Tamm K, Peets T, Berezovski M (2013) Dispersive waves in microstructured solids. International Journal of Solids and Structures 50(11):1981–1990Google Scholar
  9. Berezovski A, Engelbrecht J, Ván P (2014) Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Archive of Applied Mechanics 84(9-11):1249–1261Google Scholar
  10. Christov CI (2012) Hidden solitons in the Zabusky-Kruskal experiment: analysis using the periodic, inverse scattering transform. Math Comput Simul 82(6):1069–1078Google Scholar
  11. Christov CI, Maugin GA, Porubov AV (2007) On boussinesq’s paradigm in nonlinear wave propagation. Comptes Rendus Mécanique 335(9):521–535Google Scholar
  12. dell’Isola F, Pouget J, Rousseau M (2014) Gérard A. Maugin: engineering scientist: Celebrating his 70th anniversary. Math Comput Simul 84:1221–1227Google Scholar
  13. Engelbrecht J, Khamidullin Y (1988) On the possible amplification of nonlinear seismic waves. Phys Earth Planet Int 50:39–45Google Scholar
  14. Engelbrecht J, Salupere A (2005) On the problem of periodicity and hidden solitons for the KdV model. Phys Earth Planet Int 15:015,114Google Scholar
  15. Engelbrecht J, Berezovski A, Pastrone F, Braun M (2005) Waves in microstructured materials and dispersion. Phil Mag 85(33–35):4127–4141Google Scholar
  16. Engelbrecht J, Pastrone F, Braun M, Berezovski A (2007) Hierarchies of waves in nonclassical materials. In: Delsanto PP (ed) Universality of Nonclassical Nonlinearity: Applications to Non-Destructive Evaluation and Ultrasonics, Springer, New York, pp 29–47Google Scholar
  17. Engelbrecht J, Tamm K, Peets T (2015) On mathemathical modelling of solitary pulses in cylindrical biomembranes. Biomech Model Mechanobiol 14:159–167Google Scholar
  18. Engelbrecht J, Peets T, Tamm K, Laasmaa M, Vendelin M (2016) On modelling of physical effects accompanying the propagation of action potentials in nerve fibres. arXivp1601.01867
  19. Engelbrecht J, Tamm K, Peets T (2017) On solutions of a Boussinesq-type equation with displacement-dependent nonlinearities: the case of biomembranes. Phil Mag 97(12):967–987Google Scholar
  20. Giovine P, Oliveri F (1995) Dynamics and wave propagation in dilatant granular materials. Meccanica 30:341–357Google Scholar
  21. Heimburg T, Jackson AD (2005) On soliton propagation in biomembranes and nerves. Proc Natl Acad Sci USA 102:9790–9795Google Scholar
  22. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544Google Scholar
  23. Ilison O, Salupere A (2006) On the propagation of solitary pulses in microstructured materials. Chaos, Solitons, Fractals 29(1):202–214Google Scholar
  24. Ilison O, Salupere A (2009) Propagation of sech2-type solitary waves in hierarchical KdV-type systems. Math Comput Simul 79:3314–3327Google Scholar
  25. Janno J, Engelbrecht J (2011) Microstructured Materials: Inverse Problems. Springer, HeidelbergGoogle Scholar
  26. Maugin GA (1999) Nonlinear Waves in Elastic Crystals. Oxford Univ. Press, Oxford et al.Google Scholar
  27. Maugin GA (2011) Solitons in elastic solids (1938–2010). Mech Res Comm 38:341–349Google Scholar
  28. Maugin GA (2015) Some remarks on generalized continuum mechanics. Math Mech Solids 20(3):280–291Google Scholar
  29. Maugin GA, Engelbrecht J (1994) A thermodynamical viewpoint on nerve pulse dynamics. J Non-Equil Thermodyn 19:9–23Google Scholar
  30. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Rat Mech Anal 16:51–78Google Scholar
  31. Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070Google Scholar
  32. Peets T, Kartofelev D, Tamm K, Engelbrecht J (2013) Waves in microstructured solids and negative group velocity. Proc IRE 103:16,001Google Scholar
  33. Porubov AV (2003) Amplification of Nonlinear Strain Waves in Solids. World Scientific, SingaporeGoogle Scholar
  34. Randrüüt M, Braun M (2010) On one-dimensional solitary waves in microstructured solids. Wave Motion 47:217–230Google Scholar
  35. Salupere A (2009) The pseudospectral method and discrete spectral analysis. In: Quak E, Soomere T (eds) Applied Wave Mathematics, Springer, Heidelberg, pp 301–33Google Scholar
  36. Salupere A, Engelbrecht J (2014) Scaling and hierarchies of wave motion in solids. ZAMM 94(9):775–783Google Scholar
  37. Salupere A, Maugin GA, Engelbrecht J (1994) KdV soliton detection from a harmonic input. Phys Lett A 192:5–8Google Scholar
  38. Salupere A, Maugin GA, Engelbrecht J, Kalda J (1996) On the KdV soliton formation and discrete spectral analysis. Wave Motion 23(1):49–66Google Scholar
  39. Salupere A, Engelbrecht J, Maugin GA (2001) Solitonic structures in KdV-based higher order systems. Wave Motion 34:51–61Google Scholar
  40. Salupere A, Peterson P, Engelbrecht J (2002) Long-time behaviour of soliton ensembles. Part I – emergence of ensembles. Chaos, Solitons, Fractals 14(9):1413–1424Google Scholar
  41. Salupere A, Peterson P, Engelbrecht J (2003) Long-time behaviour of soliton ensembles. Part I – periodical patterns of trajectories. Chaos, Solitons, Fractals 15(1):29–40Google Scholar
  42. Salupere A, Tamm K, Engelbrecht J (2008) Numerical simulation of interaction of solitary deformation waves in microstructured solids. Int J Non-Lin Mech 43:201–208Google Scholar
  43. Salupere A, Lints M, Engelbrecht J (2014) On solitons in media modelled by the hierarchical KdV equation. Arch Appl Mech 84(9–11):1583–1593Google Scholar
  44. Zabusky NJ, Kruskal MD (2014) Interaction of solitons in a collisionless plasma and the recurrence of inititial states. Phys Rev Lett 15:240–243Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jüri Engelbrecht
    • 1
  • Andrus Salupere
    • 1
  • Arkadi Berezovski
    • 1
  • Tanel Peets
    • 1
  • Kert Tamm
    • 1
  1. 1.Department of Cybernetics, School of ScienceTallinn University of TechnologyTallinnEstonia

Personalised recommendations