Miscellaneous Antibiotics

  • Gregory M. Susla
Part of the Infectious Disease book series (ID)


The chapter on miscellaneous antibiotics reviews the drug interactions with antibiotics such as chloramphenicol, tetracycline, and the aminoglycosides which are older agents that are less frequently prescribed, so many clinicians may not be familiar with their interactions with other medications. It also reviews the interactions with tigecycline and quinupristin-dalfopristin, two agents that are the only available agents from classes of antibiotics that are used clinically today. Many of the interactions reviewed such as with linezolid are based on single case reports or a limited series of patients. This chapter serves as a convenient resource for the drug interactions associated with these older antibiotics and as a compilation of the multiple case reports of drug interactions with antibiotics such as linezolid.


  1. 1.
    Spika JS, Davis DJ, Martin SR et al (1986) Interaction between chloramphenicol and acetaminophen. Arch Dis Child 61:1211–1124CrossRefGoogle Scholar
  2. 2.
    Kearns GL, Bocchini JA, Brown RD et al (1985) Absence of a pharmacokinetic interaction between chloramphenicol and acetaminophen in children. J Pediatr 107:134–139PubMedCrossRefGoogle Scholar
  3. 3.
    Stein CM, Thornhill DP, Neill P et al (1989) Lack of effect of paracetamol on the pharmacokinetics of chloramphenicol. Br J Clin Pharmacol 27:262–264PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bloxham RA, Durbin GM, Johnson T et al (1979) Chloramphenicol and phenobarbitone Na drug interaction. Arch Dis Child 54:76–77PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Powell DA, Nahata MC, Durrell DC et al (1981) Interactions among chloramphenicol, phenytoin, and phenobarbital in a pediatric patient. J Pediatr 98:1001–1003PubMedCrossRefGoogle Scholar
  6. 6.
    Koup JR, Gibaldi M, McNamara P et al (1987) Interaction of chloramphenicol with phenytoin and phenobarbital. Clin Pharmacol Ther 24:571–575CrossRefGoogle Scholar
  7. 7.
    Ballek RE, Reidenberg MM, Orr L (1973) Inhibition of diphenylhydantoin metabolism by chloramphenicol. Lancet 1:150PubMedCrossRefGoogle Scholar
  8. 8.
    Greenlaw CW (1979) Chloramphenicol-phenytoin interaction. Drug Intell Clin Pharm 13:609–610CrossRefGoogle Scholar
  9. 9.
    Saltiel M, Stephens NM (1980) Phenytoin-chloramphenicol interaction. Drug Intell Clin Pharm 14:221CrossRefGoogle Scholar
  10. 10.
    Christensen LK, Skovsted L (1969) Inhibition of metabolism by chloramphenicol. Lancet 2:1397–1399PubMedCrossRefGoogle Scholar
  11. 11.
    Brunova E, Slabochova Z, Platilova H et al (1977) Interaction of tolbutamide and chloramphenicol in diabetic patients. Int J Clin Pharmacol 15:7–12Google Scholar
  12. 12.
    Petitpierre B, Fabre J (1970) Chlorpropamide and chloramphenicol. Lancet 1:789PubMedCrossRefGoogle Scholar
  13. 13.
    Wallace JF, Smith RH, Garcia M et al (1967) Studies on the pathogenesis of meningitis. VI. Antagonism between penicillin and chloramphenicol in experimental pneumococcal meningitis. J Lab Clin Med 70:408–418PubMedGoogle Scholar
  14. 14.
    Jawetz E (1968) The use of combinations of antimicrobial drugs. Annu Rev Pharmacol 8:151–170PubMedCrossRefGoogle Scholar
  15. 15.
    Deritis F, Giammanco G, Manzillo G (1972) Chloramphenicol combined with ampicillin in treatment of typhoid. Br Med J 4:17–18CrossRefGoogle Scholar
  16. 16.
    French GL, Ling TKW, Davies DP et al (1985) Antagonism of ceftazidime by chloramphenicol in vitro and in vivo during treatment of gram negative meningitis. Br Med J 291:636–637CrossRefGoogle Scholar
  17. 17.
    Prober CG (1985) Effect of rifampin on chloramphenicol levels. N Engl J Med 312:788–789PubMedCrossRefGoogle Scholar
  18. 18.
    Kelly HW, Couch RC, Davis RL et al (1988) Interaction of chloramphenicol and rifampin. J Pediatr 112:817–820PubMedCrossRefGoogle Scholar
  19. 19.
    Koch-Weser J, Sellars EM (1971) Drug interactions with coumarin anticoagulants (first of two parts). N Engl J Med 285:487–498CrossRefGoogle Scholar
  20. 20.
    Koch-Weser J, Sellars EM (1971) Drug interactions with coumarin anticoagulants (second of two parts). N Engl J Med 285:547–558CrossRefGoogle Scholar
  21. 21.
    Finegold SM (1970) Interaction of antimicrobial therapy and intestinal flora. Am J Clin Nutr 23:1466–1471PubMedCrossRefGoogle Scholar
  22. 22.
    Klippel AP, Pitsinger B (1968) Hypoprothrombinemia secondary to antibiotic therapy and manifested by massive gastrointestinal hemorrhage. Arch Surg 96:266–268PubMedCrossRefGoogle Scholar
  23. 23.
    Bui LL, Huang DD (1999) Possible interaction between cyclosporine and chloramphenicol. Ann Pharmacother 33:252.253CrossRefGoogle Scholar
  24. 24.
    Steinfort CL, McConachy KA (1994) Cyclosporin-chloramphenicol drug interaction in a heart-lung transplant patient. Med J Aust 161:455PubMedGoogle Scholar
  25. 25.
    Mathis AS, Shah N, Knipp GT et al (2002) Interaction of chloramphenicol and the calcineurin inhibitors in renal transplant patients. Transplant Infect Dis 4:169–174CrossRefGoogle Scholar
  26. 26.
    Schulman SL, Shaw LM, Jabs K et al (1998) Interaction between tacrolimus and chloramphenicol in a renal transplant recipient. Transplantation 65:1397–1398PubMedCrossRefGoogle Scholar
  27. 27.
    Taber DJ, Dupuis RE, Hollar KD et al (2000) Drug-drug interaction between chloramphenicol and tacrolimus in a liver transplant recipient. Transplant Proc 32:660–662PubMedCrossRefGoogle Scholar
  28. 28.
    Bakri R, Breen C, Maclean D et al (2003) Serious interaction between tacrolimus FK506 and chloramphenicol in a kidney-pancreas transplant recipient. Transpl Int 16:441–443PubMedGoogle Scholar
  29. 29.
    Hafner V, Albermann N, Haefeli WE et al (2008) Inhibition of voriconazole metabolism by chloramphenicol in an adolescent with central nervous system aspergillosis. Antimicrob Agents Chemother 52:4172–4174PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Becker LD, Miller RD (1976) Clindamycin enhances a nondepolarizing neuromuscular blockade. Anesthesiology 45:84–87PubMedCrossRefGoogle Scholar
  31. 31.
    Best JA, Marashi AH, Pollan LD (1999) Neuromuscular blockade after clindamycin administration: a case report. J Oral Maxillofac Surg 57:600–603PubMedCrossRefGoogle Scholar
  32. 32.
    al Ahdal O, Bevan DR (1995) Clindamycin-induced neuromuscular blockade. Can J Anaesth 42:614–617PubMedCrossRefGoogle Scholar
  33. 33.
    Sloan PA, Rasul M (2002) Prolongation of rapacuronium neuromuscular blockade by clindamycin and magnesium. Anesth Analg 94:123–124PubMedGoogle Scholar
  34. 34.
    Rubbo JT, Sokoll MD, Gergis SD (1977) Comparative neuromuscular effects of lincomycin and clindamycin. Anesth Analg 56:329–332PubMedCrossRefGoogle Scholar
  35. 35.
    Wright JM, Collier B (1976) Characterization of the neuromuscular block produced by clindamycin and lincomycin. Can J Physiol Pharmacol 54:937–944PubMedCrossRefGoogle Scholar
  36. 36.
    Fiekers J, Henderson F, Marshall I et al (1983) Comparative effects of clindamycin and lincomycin on end-plate currents and quantal content at the neuromuscular junction. J Pharmacol Exp Ther 227:308–315PubMedGoogle Scholar
  37. 37.
    Atchinson W, Adgate L, Beaman C (1988) Effects of antibiotics on the uptake of calcium into isolated nerve terminals. J Pharmacol Exp Ther 245:394–401Google Scholar
  38. 38.
    Butkus DE, de Torrente A, Terman DS (1976) Renal failure following gentamicin in combination with clindamycin. Nephron 17:307–313PubMedCrossRefGoogle Scholar
  39. 39.
    Fruscio R, Lissoni AA, Frapolli R et al (2006) Clindamycin-paclitaxel pharmacokinetic interaction in ovarian cancer patients. Cancer Chemother Pharmacol 58:319–325PubMedCrossRefGoogle Scholar
  40. 40.
    Curis E, Pestre V, Jullien V et al (2015) Pharmacokinetic variability of clindamycin and influence of rifampicin on clindamycin concentrations in patients with bone and joint infections. Infection 43:473–481PubMedCrossRefGoogle Scholar
  41. 41.
    Zeller V, Dzeing-Ella A, Kitzis MD et al (2010) Continuous clindamycin infusion, an innovative approach to treating bone and joint infections. Antimicrob Agents Chemother 54:88–92PubMedCrossRefGoogle Scholar
  42. 42.
    Bernard A, Kermarrec G, Parize P et al (2015) Dramatic reduction of clindamycin serum concentration in staphylococcal osteoarticular infection patients treated with oral clindamycin-rifampicin combination. J Infect 71:200–206PubMedCrossRefGoogle Scholar
  43. 43.
    Wynalda MA, Hutzler JM, Koets MD et al (2003) In vitro metabolism of clindamycin in human liver and intestinal microsomes. Drug Metab Dispos 31:878–887PubMedCrossRefGoogle Scholar
  44. 44.
    Tilstone WJ, Gray JM, Nimmo-Smith RH et al (1977) Interaction between warfarin and sulphamethoxazole. Postgrad Med J 53:388–390PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kaufman JM, Fauver HE (1980) Potentiation of warfarin by trimethoprim-sulfamethoxazole. Urology 16:601–603PubMedCrossRefGoogle Scholar
  46. 46.
    Greenlaw CW (1979) Drug interaction between co-trimoxazole and warfarin. Am J Hosp Pharm 36:1155PubMedGoogle Scholar
  47. 47.
    Errick JK, Keys PW (1978) Co-trimoxazole and warfarin: case report of an interaction. Am J Hosp Pharm 35:1399–1401PubMedGoogle Scholar
  48. 48.
    O'Reilly RA, Motley CH (1979) Racemic warfarin and trimethoprim-sulfamethoxazole interaction in humans. Ann Intern Med 91:34–36PubMedCrossRefGoogle Scholar
  49. 49.
    O'Reilly RA (1980) Stereoselective interaction of trimethoprim-sulfamethoxazole with the separated enantiomorphism of racemic warfarin in man. N Engl J Med 302:33–35PubMedCrossRefGoogle Scholar
  50. 50.
    Beest P-v, Koerselman J, Herings RMC (2008) Risk of major bleeding during concomitant use of antibiotic drugs and coumarin anticoagulants. J Thromb Haemost 6:284–290CrossRefGoogle Scholar
  51. 51.
    Lane MA, Zeringue A, McDonald JR (2014) Serious bleeding events due to warfarin and antibiotic co-prescription in a cohort of veterans. Am J Med 127:657–663PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ahmed A, Stephens JC, Kaus CA et al (2008) Impact of preemptive warfarin dose reduction on anticoagulation after initiation of trimethoprim-sulfamethoxazole or levofloxacin. J Throm Thrombolysis 26:44–48CrossRefGoogle Scholar
  53. 53.
    Schalekamp T, van Geest-Daalderop JHH, MHH K et al (2007) Coumarin anticoagulants and co-trimoxazole: avoid the combination rather than manage the interaction. Eur J Clin Pharmacol 63:335–343PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Parekh TM, Raji M, Lin YL et al (2014) Hypoglycemia after antimicrobial drug prescription for older patients using sulfonylureas. JAMA Int Med 174:1605–1612CrossRefGoogle Scholar
  55. 55.
    Tan A, Holmes HM, Kuo YF et al (2015) Co-administration of co-trimoxazole with sulfonylureas: hypoglycemia events and pattern of use. J Gerontol A Biol Sci Med Sci 70:247–254PubMedCrossRefGoogle Scholar
  56. 56.
    Schelleman H, Bilker WB, Brensinger CM et al (2010) Anti-infective and the risk of severe hypoglycemia in users of glipizide or glyburide. Clin Pharmacol Ther 88:214–222PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Juurlink DN, Mamdani M, Kopp A et al (2003) Drug-drug interactions among elderly patients hospitalized for drug toxicity. JAMA 289:1652–1658PubMedCrossRefGoogle Scholar
  58. 58.
    Alappan R, Perazella MA, Buller GK (1996) Hyperkalemia in hospitalized patients treated with trimethoprim-sulfamethoxazole. Ann Int Med 124:316–320PubMedCrossRefGoogle Scholar
  59. 59.
    Alappan R, Buller GK, Perazella MA (1999) Trimethoprim-sulfamethoxazole therapy in outpatients: is hyperkalemia a significant problem? Am J Nephrol 19:389–394PubMedCrossRefGoogle Scholar
  60. 60.
    Nguyen AT, Gentry CA, Furrh RZ (2013) A comparison of adverse drug reactions between high- and standard-dose trimethoprim-sulfamethoxazole in the ambulatory setting. Curr Drug Saf 8:114–119PubMedCrossRefGoogle Scholar
  61. 61.
    Gentry CA, Nguyen AT (2013) An evaluation of hyperkalemia and serum creatinine elevations associated with different dosage levels of outpatient trimethoprim-sulfamethoxazole with and without concomitant medications. Ann Pharmacother 47:1618–1626PubMedCrossRefGoogle Scholar
  62. 62.
    Velazquez H, Perazella MA, Wright FS et al (1993) Renal mechanism of trimethoprim-induced hyperkalemia. Ann Intern Med 119:296–301PubMedCrossRefGoogle Scholar
  63. 63.
    Fralick M, Macdonald EM, Gomes T et al (2014) Co-trimoxazole and sudden cardiac death in patients receiving inhibitors of renin-angiotensin system: population based study. BMJ 349:g6196. PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lee SW, Park SW, Kang JM (2014) Intraoperative hyperkalemia induced by administration of TMP-SMX in a patient receiving angiotensin receptor blockers. J Clin Anesth 26:427–428PubMedCrossRefGoogle Scholar
  65. 65.
    Antoniou T, Hollands S, Macdonald EM et al (2015) Trimethoprim-sulfamethoxazole and risk of sudden death among patients taking spironolactone. CMAJ 187:E138–E142PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pierce D, Corcoran M, Martin P et al (2014) Effect of mmx mesalamine coadministration on the pharmacokinetics of amoxicillin, ciprofloxacin xr, metronidazole, and sulfamethoxazole: results from four randomized clinical trials. Drug Des Devel Ther 8:529–543PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Cudmore J, Seftel M, Sisler J et al (2014) Methotrexate and trimethoprim-sulfamethoxazole. Toxcity from this combination continues to occur. Can Fam Physician 60:53–56PubMedPubMedCentralGoogle Scholar
  68. 68.
    Davis SA, Krowchuk DP, Feldman SR (2014) Prescriptions for a toxic combination: use of methotrexate plus trimethoprim-sulfamethoxazole in the United States. South Med J 107:292–293PubMedGoogle Scholar
  69. 69.
    Green M, Otieno K, Katana A et al (2016) Pharmacokinetics of mefloquine and its effect on sulfamethoxazole and trimethoprim steady-state blood levels in intermittent preventive treatment (IPTp) of pregnant HIV-infected women in Kenya. Malar J 17:7. CrossRefGoogle Scholar
  70. 70.
    Jaffe JM, Colonize JL, Pouts RI et al (1973) Effect of altered urinary pH on tetracycline and doxycycline excretion in humans. J Pharmacokinet Bipolar 1:267–282CrossRefGoogle Scholar
  71. 71.
    Jaffe JM, Pouts RL, Fled SL et al (1974) Influence of repetitive dosing and altered pH on doxycycline excretion in humans. J Pharm Sci 63:1256–1260PubMedCrossRefGoogle Scholar
  72. 72.
    Chin TF, Latch JL (1975) Drug diffusion and bioavailability: tetracycline metallic chelation. Am J Hosp Pharm 32:625–529PubMedGoogle Scholar
  73. 73.
    Ericsson CD, Feldman S, Pickering LK et al (1982) Influence of subsalicylate bismuth on absorption of doxycycline. JAMA 247:2266–2267PubMedCrossRefGoogle Scholar
  74. 74.
    Albert KS, Welch RD, Descanted KA et al (1979) Decreased tetracycline bioavailability caused by a bismuth subsalicylate antidiarrheal mixture. J Pharm Sci 68:586–588PubMedCrossRefGoogle Scholar
  75. 75.
    Friedman H, Greenbelt DJ, Leduc BW (1989) Impaired absorption of tetracycline by colestipol is not reversed by orange juice. J Clin Pharmacol 29:748–751PubMedCrossRefGoogle Scholar
  76. 76.
    Lindenbaum J, Round DG, Butler VP et al (1981) Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 305:789–794PubMedCrossRefGoogle Scholar
  77. 77.
    Penttilla O, Neuvonen PJ, Ahoy K et al (1974) Interaction between doxycycline and some anti- epileptic drugs. Br Med J 2:470–472CrossRefGoogle Scholar
  78. 78.
    Neuvonen PJ, Penttilla O, Lehtovaara R et al (1975) Effect of antiepileptic drugs on the elimination of various tetracycline derivatives. Eur J Clin Pharmacol 9:147–154PubMedCrossRefGoogle Scholar
  79. 79.
    Neuvonen PJ, Penttila O (1974) Interaction between doxycycline and barbiturates. Br Med J 1:535–536PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Westfall LK, Mintzer DL, Wiser TH (1980) Potentiation of warfarin by tetracycline. Am J Hosp Pharm 37:1620–1625PubMedGoogle Scholar
  81. 81.
    Caraco Y, Rubinow A (1992) Enhanced anticoagulant effect of coumarin derivatives induced by doxycycline coadministration. Ann Pharmacother 26:1084–1086PubMedCrossRefGoogle Scholar
  82. 82.
    McGennis AJ (1978) Lithium carbonate and tetracycline interaction. Br Med J 1:1183PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Dowd MB, Kippes KA, Witt DM et al (2012) A randomized controlled trial of empiric warfarin dose reduction with the initiation of doxycycline therapy. Thromb Res 130:152–156PubMedCrossRefGoogle Scholar
  84. 84.
    Fankhauser MP, Lindon JL, Connolly B et al (1988) Evaluation of lithium-tetracycline interaction. Clin Pharm 7:314–317PubMedGoogle Scholar
  85. 85.
    Steele M, Couturier JA (1999) possible tetracycline-risperidone-sertraline interaction in an adolescent. Can J Clin Pharmacol 6:15–17PubMedGoogle Scholar
  86. 86.
    McCormack JP, Reid SE, Lawson LM (1990) Theophylline toxicity induced by tetracycline. Clin Pharm 9:546–549PubMedGoogle Scholar
  87. 87.
    Kawai M, Honda A, Yoshida H et al (1992) Possible theophylline-minocycline interaction. Ann Pharmacother 26:1300–1301PubMedCrossRefGoogle Scholar
  88. 88.
    Pfeifer HJ, Greenblatt DJ, Friedman P (1979) Effects of three antibiotics on theophylline kinetics. Clin Pharmacol Ther 26:36–40PubMedCrossRefGoogle Scholar
  89. 89.
    Mathis JW, Prince RA, Weinberger MM et al (1982) Effect of tetracycline hydrochloride on theophylline kinetics. Clin Pharm 1:446–448PubMedGoogle Scholar
  90. 90.
    Gotz VP, Ryerson GG (1986) Evaluation of tetracycline on theophylline disposition in patients with chronic obstructive airways disease. Drug Intell Clin Pharm 20:694–697PubMedCrossRefGoogle Scholar
  91. 91.
    Jonkman JHG, van der Boon WJV, Schoenmaker R et al (1985) No influence of doxycycline on theophylline pharmacokinetics. Ther Drug Monit 7:92–94PubMedCrossRefGoogle Scholar
  92. 92.
    Bacon JF, Shenfield GM (1980) Pregnancy attributable to interaction between tetracycline and oral contraceptives. Br Med J 280:293PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    DeSano EA, Hurley SC (1982) Possible interactions of antihistamines and antibiotics with oral contraceptive effectiveness. Fertil Steril 37:853–854PubMedCrossRefGoogle Scholar
  94. 94.
    Helms SE, Bredle DL, Zajic J et al (1997) Oral contraceptive failure rates and oral antibiotics. J Am Acad Dermatol 36:705–710PubMedCrossRefGoogle Scholar
  95. 95.
    Neely JL, Abate M, Swinkler M et al (1991) The effect of doxycycline on serum levels of ethinyl estradiol, norethindrone, and endogenous progesterone. Obstet Gynecol 77:416–420PubMedGoogle Scholar
  96. 96.
    Murphy AA, Zacur HA, Charache P et al (1991) The effect of tetracycline on levels of oral contraceptives. Am J Obstet Gynecol 164:28–33PubMedCrossRefGoogle Scholar
  97. 97.
    Dogterom P, van den Heuvel MW, Thomsen T (2005) Absence of pharmacokinetic interactions of the combined contraceptive vaginal ring NuvaRing with oral amoxicillin or doxycycline in two randomized trials. Clin Pharmacokinet 44:429–438PubMedCrossRefGoogle Scholar
  98. 98.
    Archer JS, Archer DF (2002) Oral contraceptive efficacy and antibiotic interaction; a myth debunked. J Am Acad Dermatol 46:917–923PubMedCrossRefGoogle Scholar
  99. 99.
    Tortajada-Ituren JJ, Ordovas-Baines JP, Llopis-Salvia P et al (1999) High-dose methotrexate-doxycycline interaction. Ann Pharmacother 33:804–808PubMedCrossRefGoogle Scholar
  100. 100.
    Turck M (1984) Successful psoriasis treatment then sudden "cytotoxicity.". Hosp Pract 19:175,6Google Scholar
  101. 101.
    Colmenero JD, Fernandez-Gallardo LC, Agundez JAG et al (1994) Possible implications of doxycycline-rifampin interaction for treatment of brucellosis. Antimicrob Agents Chemother 38:2798–2802PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zimmerman JJ, Raible DG, Harper DM et al (2008) Evaluation of potential tigecycline-warfarin drug interaction. Pharmacotherapy 28:895–905PubMedCrossRefGoogle Scholar
  103. 103.
    Stumpf AN, Schmidt C, Hiddemann W et al (2009) High serum concentrations of ciclosporin related to administration of tigecycline. Eur J Clin Pharmacol 65:101–103PubMedCrossRefGoogle Scholar
  104. 104.
    Srinivas NR (2009) Tigecycline and cyclosporine interaction-an interesting case of biliary –excreted drug enhancing the oral bioavailability of cyclosporine. Eur J Clin Pharmacol 65:543–544PubMedCrossRefGoogle Scholar
  105. 105.
    Pavan M, Chaudhari AP, Ranganth R et al (2011) Altered bioavailability of tacrolimus following intravenous administration of tigecycline. Am J Kid Dis 57:352CrossRefGoogle Scholar
  106. 106.
    Churchill DN, Seely J (1977) Nephrotoxicity associated with combined gentamicin-amphotericin B therapy. Nephron 19:176–181PubMedCrossRefGoogle Scholar
  107. 107.
    Kroenfeld MA, Thomas SJ, Turndorf H (1986) Recurrence of neuromuscular blockade after reversal of vecuronium in a patient receiving polymyxin/amikacin sternal irrigation. Anesthesiology 65:93–94CrossRefGoogle Scholar
  108. 108.
    Warner WA, Sanders E (1971) Neuromuscular blockade associated with gentamicin therapy. JAMA 215:1153–1154PubMedCrossRefGoogle Scholar
  109. 109.
    Levanen J, Nordman R (1975) Complete respiratory paralysis caused by a large dose of streptomycin and its treatment with calcium chloride. Ann Clin Res 7:47–49PubMedGoogle Scholar
  110. 110.
    Lippmann M, Yang E, Au E et al (1982) Neuromuscular blocking effects of tobramycin, gentamicin, and cefazolin. Anesth Analg 61:767–770PubMedGoogle Scholar
  111. 111.
    Duouis JY, Martin R, Tetrault JP (1989) Atracurium and vecuronium interaction with gentamicin and tobramycin. Can J Anaesth 36:407–411CrossRefGoogle Scholar
  112. 112.
    Singh YN, Marshall IG, Harvey AL (1982) Pre- and postjunctional blocking effects of aminoglycoside, polymyxin, tetracycline and lincosamide antibiotics. Br J Anaesth 54:1295–1306PubMedCrossRefGoogle Scholar
  113. 113.
    Zarfarin Y, Koren G, Maresky D et al (1985) Possible indomethacin-aminoglycoside interaction in preterm infants. J Pediatr 106:511–513CrossRefGoogle Scholar
  114. 114.
    Termeer A, Hoitsma AJ, Koene RAP (1986) Severe nephrotoxicity caused by the combined use of gentamicin and cyclosporine in renal allograft recipients. Transplantation 42:220–221PubMedGoogle Scholar
  115. 115.
    Christensen ML, Stewart CF, Crom WR (1989) Evaluation of aminoglycoside disposition in patients previously treated with cisplatin. Ther Drug Monit 11:631–636PubMedCrossRefGoogle Scholar
  116. 116.
    Gonzalez-Vitale JC, Hayes DM, Cvitkovic E et al (1978) Acute renal failure after cis-dichlorodiammineplatinum (II) and gentamicin-cephalothin therapies. Cancer Treat Rep 62:693–698PubMedGoogle Scholar
  117. 117.
    Salem PA, Jabboury KW, Khalil MF (1982) Severe nephrotoxicity: a probable complication of cis-dichlorodiammineplatinum (II) and cephalothin-gentamicin therapy. Oncology 39:31–32PubMedCrossRefGoogle Scholar
  118. 118.
    Kohn S, Fradis M, Podoshin L et al (1997) Ototoxicity resulting from combined administration of cisplatin and gentamicin. Laryngoscope 107:407–408PubMedCrossRefGoogle Scholar
  119. 119.
    Dentino M, Luft FC, Yum MN et al (1978) Long-term effect of cis-diamminedichloride platinum (CDDP) on renal function and structure in man. Cancer 41:1274–1281PubMedCrossRefGoogle Scholar
  120. 120.
    Lee EJ, Egorin MJ, Van Echo DA et al (1988) Phase I and pharmacokinetic trial of carboplatin in refractory adult leukemia. J Natl Cancer Inst 80:131–135PubMedCrossRefGoogle Scholar
  121. 121.
    Bregman CL, Williams PD (1986) Comparative nephrotoxicity of carboplatin and cisplatin in combination with tobramycin. Cancer Chemother Pharmacol 18:117–123PubMedCrossRefGoogle Scholar
  122. 122.
    Kaka JS, Lyman C, Kilarski DJ (1984) Tobramycin-furosemide interaction. Drug Intell Clin Pharm 18:235–238PubMedCrossRefGoogle Scholar
  123. 123.
    Mathog RH, Klein WJ (1969) Ototoxicity of ethacrynic acid and aminoglycoside antibiotics in uremia. N Engl J Med 280:1223–1224PubMedCrossRefGoogle Scholar
  124. 124.
    Smith CR, Lietman PS (1983) Effect of furosemide on aminoglycoside-induced nephrotoxicity and auditory toxicity in humans. Antimicrob Agents Chemother 23:133–137PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Pillay VKG, Schwartz FD, Aimi K et al (1969) Transient and permanent deafness following treatment with ethacrynic acid in renal failure. Lancet 1:77–79PubMedCrossRefGoogle Scholar
  126. 126.
    Meriweather WD, Mangi RJ, Serpick AA (1971) Deafness following standard intravenous doses of ethacrynic acid. JAMA 216:795–798CrossRefGoogle Scholar
  127. 127.
    Cimino MA, Rotstein C, Slaughter RL et al (1987) Relationship of serum antibiotic concentrations to nephrotoxicity in cancer patients receiving concurrent aminoglycoside and vancomycin therapy. Am J Med 83:1091–1097PubMedCrossRefGoogle Scholar
  128. 128.
    Pauly DJ, Musa DM, Lestico MR et al (1990) Risk of nephrotoxicity with combination vancomycin-aminoglycoside antibiotic therapy. Pharmacotherapy 10:378382Google Scholar
  129. 129.
    Mellor JA, Kingdom J, Cafferkey M et al (1985) Vancomycin toxicity: a prospective study. J Antimicrob Chemother 15:773–780PubMedCrossRefGoogle Scholar
  130. 130.
    Ryback MJ, Albrecht LM, Boike SC et al (1990) Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 25:679–687CrossRefGoogle Scholar
  131. 131.
    Ramsey TD, Lau TTY, Ensom MHH (2013) Serotonergic and adrenergic drug interactions associated with linezolid: a critical review and practical management approach. Ann Pharmacother 47:543–560PubMedCrossRefGoogle Scholar
  132. 132.
    Douros A, Grabowski K, Stahlmann R (2015) Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones. Expert Opin Drug Metab Toxicol 11:1849–1859PubMedCrossRefGoogle Scholar
  133. 133.
    Narita M, Tsuji BT, Linezolid-associated YV (2007) Peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy 27:1189–1197PubMedCrossRefGoogle Scholar
  134. 134.
    Wigen CL, Goetz MB (2002) Serotonin syndrome and linezolid. Clin Infect Dis 34:1651–1652PubMedCrossRefGoogle Scholar
  135. 135.
    Hachem RY, Hicks K, Huen A et al (2003) Myelosuppression and serotonin syndrome associated with concurrent use of linezolid and selective serotonin reuptake inhibitors in bone marrow transplant recipients. Clin Infect Dis 37:e8–11PubMedCrossRefGoogle Scholar
  136. 136.
    Lavery S, Ravi H, McDaniel WW et al (2001) Linezolid and serotonin syndrome. Psychosomatics 42:432–434PubMedCrossRefGoogle Scholar
  137. 137.
    Clark DB, Andrus MR, Byrd DC (2006) Drug interactions between linezolid and selective serotonin reuptake inhibitors: case report involving sertraline and review of the literature. Pharmacotherapy 26:269–276PubMedCrossRefGoogle Scholar
  138. 138.
    Sola CL, Bostwick JM, Hart DA et al (2006) Anticipating potential linezolid-SSRI interactions in the general hospital setting an MAOI in disguise. Mayo Clin Proc 81:330–334PubMedCrossRefGoogle Scholar
  139. 139.
    Aga VM, Barklage NE, Jefferson JW (2003) Linezolid, a monoamine oxidase inhibiting antibiotic, and antidepressants. J Clin Psychiatry 64:609–611PubMedCrossRefGoogle Scholar
  140. 140.
    Debellas RJ, Schaefer OP, Liquori M et al (2005) Linezolid-associated serotonin syndrome after concomitant treatment with citalopram and mirtazapine in a critically ill bone marrow transplant recipient. J Intensive Care Med 20:303–305CrossRefGoogle Scholar
  141. 141.
    Hammerness P, Parada H, Abrams A (2002) Linezolid: MAOI activity and potential drug interactions. Psychosomatics 43:248–249PubMedCrossRefGoogle Scholar
  142. 142.
    Packer S, Berman SA (2007) Serotonin syndrome precipitated by the monoamine oxidase inhibitor linezolid. Am J Psychiatry 164:346–347PubMedCrossRefGoogle Scholar
  143. 143.
    Mason LW, Randhawa KS, Carpenter EC (2008) Serotonin toxicity as a consequence of linezolid use in revision hip arthroplasty. Orthopedics 31:1140PubMedCrossRefGoogle Scholar
  144. 144.
    Bergeron L, Boule M, Perreault S (2005) Serotonin toxicity associated with concomitant use of linezolid. Ann Pharmacother 39:956–961PubMedCrossRefGoogle Scholar
  145. 145.
    Jones SL, Athan E, O’Brien D (2004) Serotonin syndrome due to co-administration of linezolid and venlafaxine. J Antimicrob Chemother 54:289–290PubMedCrossRefGoogle Scholar
  146. 146.
    Steinberg M, Morin A (2007) Mild serotonin syndrome associated with concurrent linezolid and fluoxetine. Am J Health Sys Pharm 64:5962CrossRefGoogle Scholar
  147. 147.
    Lorenz RA, Vandenberg AM, Canepa EA (2008) Serotonergic antidepressants and linezolid: a retrospective chart review and presentation of cases. Int J Psychiatry Med 38:81–90PubMedCrossRefGoogle Scholar
  148. 148.
    Das PK, Warkentin DI, Hewko R et al (2008) Serotonin syndrome after concomitant treatment with linezolid with meperidine. Clin Infect Dis 46:264–265PubMedCrossRefGoogle Scholar
  149. 149.
    Morrison EK, Rowe AS (2012) Probable drug-drug interaction leading to serotonin syndrome in a patient treated with concomitant buspirone and linezolid in the setting of therapeutic hypothermia. J Clin Pharmacol Ther 37:610–613CrossRefGoogle Scholar
  150. 150.
    Gebhart BC, Barker BC, Markewitz BA (2007) Decreased serum linezolid levels in a critically ill patient receiving concomitant linezolid and rifampin. Pharmacotherapy 27:476–479PubMedCrossRefGoogle Scholar
  151. 151.
    Egle H, Trittler R, Kummerer K et al (2005) Linezolid and rifampin: drug interaction contrary to expectations? Clin Pharmacol Ther 77:451–452PubMedCrossRefGoogle Scholar
  152. 152.
    Gervasoni C, Simonetti FR, Resnati C et al (2015) Prolonged inductive effect of rifampicin in linezolid exposure. Eur J Clin Pharmacol 71:643–644PubMedCrossRefGoogle Scholar
  153. 153.
    Hendershot PE, Antal EJ, Welshman IR (2002) Linezolid: pharmacokinetic and pharmacodynamic evaluation of coadministration with pseudoephedrine HCl, phenylpropanolamine HCL, and dextromethorphan HBr. J Clin Pharmacol 41:563–572CrossRefGoogle Scholar
  154. 154.
    Sakai Y, Naito T, Arima C et al (2015) Potential drug interaction between warfarin and linezolid. Intern Med 54:459–464PubMedCrossRefGoogle Scholar
  155. 155.
    Bolhuis MS, van Altena R, Uges DRA et al (2010) Clarithromycin significantly increases linezolid serum concentrations. Antimicrob Agents Chemother 54:5418–5419PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Bolhuis MS, Altena v, van Soolingen D et al (2013) Clarithromycin increases linezolid exposure in multidrug-resistant tuberculosis patients. Eur Respir J 42:1614–1621PubMedCrossRefGoogle Scholar
  157. 157.
    Synercid IV (2003) (quinupristin-dalfopristin) product information. King Pharmaceutical, BristolGoogle Scholar
  158. 158.
    Stamatakis MK, Richards JG (1997) Interaction between quinupristin-dalfopristin and cyclosporine. Ann Pharmacother 31:576–578PubMedCrossRefGoogle Scholar
  159. 159.
    Lampasona V, Crass RE, Reines HD (1983) Decreased serum tobramycin concentrations in patient with renal failure. Clin Pharm 2:6–9PubMedGoogle Scholar
  160. 160.
    Russo M (1980) Penicillin-aminoglycoside inactivation: another possible mechanism of interaction. Am J Hosp Pharm 37:702–704PubMedGoogle Scholar
  161. 161.
    Chow MSS, Quintiliani R, Nightingale CH (1982) In vivo inactivation of tobramycin by ticarcillin. JAMA 247:658–659PubMedCrossRefGoogle Scholar
  162. 162.
    Kradjan WA, Burger R (1980) In vivo inactivation of gentamicin by carbenicillin and ticarcillin. Arch Intern Med 140:1668–1670PubMedCrossRefGoogle Scholar
  163. 163.
    Schentag JJ, Simons GW, Schultz RW et al (1984) Complexation versus hemodialysis to reduce elevated aminoglycoside serum concentrations. Pharmacotherapy 4:374–380PubMedCrossRefGoogle Scholar
  164. 164.
    Uber WE, Brundage RR, White RL et al (1991) In vivo inactivation of tobramycin by piperacillin. Ann Pharmacother 25:357–359Google Scholar
  165. 165.
    Thompson MIB, Russo ME, Saxon BJ et al (1982) Gentamicin inactivation by piperacillin or carbenicillin in patients with end-stage renal disease. Antimicrob Agents Chemother 21:268–273PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Ervin FR, Bullock WE, Nuttall CE (1976) Inactivation of gentamicin by penicillins in patients with renal failure. Antimicrob Agents Chemother 9:1004–1031PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Wallace SM, Chan LY (1985) In vitro interaction of aminoglycosides with β-lactam penicillins. Antimicrob Agents Chemother 28:274–281PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Henderson JL, Polk RE, Kline BJ (1981) In vitro inactivation of gentamicin, tobramycin, and netilmicin by carbenicillin, azlocillin, or mezlocillin. Am J Hosp Pharm 38:1167–1170PubMedGoogle Scholar
  169. 169.
    Pickering LK, Gearhart P (1979) Effect of time and concentration upon interaction between gentamicin, tobramycin, netilmicin, or amikacin and carbenicillin or ticarcillin. Antimicrob Agents Chemother 15:592–596PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Pickering LK, Rutherford I (1981) Effect of concentration and time upon inactivation of tobramycin, gentamicin, netilmicin, and amikacin by azlocillin, carbenicillin, mecillinam, mezlocillin, and piperacillin. J Pharmacol Exp Ther 217:345–349PubMedGoogle Scholar
  171. 171.
    Hold HA, Broughall JM, McCarthy M et al (1976) Interactions between aminoglycoside antibiotics and carbenicillin or ticarcillin. Infection 4:107–109CrossRefGoogle Scholar
  172. 172.
    Davies M, Morgan JR, Anand C (1975) Interaction of carbenicillin and ticarcillin with gentamicin. Antimicrob Agents Chemother 7:431–434PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Mclaughlin JE, Reeves DS (1971) Clinical and laboratory evidence of inactivation of gentamicin by carbenicillin. Lancet 1:261–264PubMedCrossRefGoogle Scholar
  174. 174.
    Rich DS (1983) Recent information about inactivation of aminoglycosides by carbenicillin, and ticarcillin: clinical implications. Hosp Pharm 18:41–43Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gregory M. Susla
    • 1
  1. 1.Medical Information, MedImmuneGaithersburgUSA

Personalised recommendations