Topological Effects and Critical Phenomena in the Three-Dimensional (3D) Ising Model

Chapter

Abstract

In this work, we analyze in detail the transfer matrices as well as the partition function of the three-dimensional (3D) Ising model, in order to understand the topological effects in three dimensions. We attempt to extract the non-local contributions to the physical properties of the 3D Ising system, by comparing the conjectured exact solution with the results of the conventional high-temperature and low-temperature expansions. This is because the conjectured solution takes into account both the local and non-local behaviors, while these conventional expansions consider only the local environments. Then, we summarize the results of our previous work, most of them being joint work with Professor N. H. March, on the critical exponents of the 3D Ising model and some related topics. This work provides a deep understanding on the topological contributions and the non-local behavior in the 3D Ising model and their effects on the critical exponents in the 3D Ising universality.

Notes

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under grant number 51331006 and 51590883.

References

  1. 1.
    E. Ising, Z. Phys. 31(1), 253 (1925).  https://doi.org/10.1007/BF02980577
  2. 2.
    L. Onsager, Phys. Rev. 65(3-4), 117 (1944).  https://doi.org/10.1103/PhysRev.65.117
  3. 3.
    Z.D. Zhang, Philos. Mag. 87(34), 5309 (2007).  https://doi.org/10.1080/14786430701646325
  4. 4.
    N.H. March, G.G.N. Angilella, Exactly Solvable Models in Many-body Theory (World Scientific, Singapore, 2016). ISBN 9789813140141CrossRefGoogle Scholar
  5. 5.
    D.J. Klein, N.H. March, Phys. Lett. A 372(30), 5052 (2008).  https://doi.org/10.1016/j.physleta.2008.04.073
  6. 6.
    N.H. March, Z.D. Zhang, Phys. Lett. A 373(23–24), 2075 (2009).  https://doi.org/10.1016/j.physleta.2009.04.006
  7. 7.
    N.H. March, Z.D. Zhang, Phys. Chem. Liq. 47(6), 693 (2009).  https://doi.org/10.1080/00319100903079154
  8. 8.
    N.H. March, Z.D. Zhang, J. Math. Chem. 47(1), 520 (2009).  https://doi.org/10.1007/s10910-009-9575-8
  9. 9.
    N.H. March, Z.D. Zhang, Phys. Chem. Liq. 48(2), 279 (2010).  https://doi.org/10.1080/00319100903296121
  10. 10.
    Z.D. Zhang, N.H. March, Phys. Chem. Liq. 48(3), 403 (2010).  https://doi.org/10.1080/00319100903539538
  11. 11.
    Z.D. Zhang, N.H. March, J. Math. Chem. 49(3), 816 (2011).  https://doi.org/10.1007/s10910-010-9778-z
  12. 12.
    Z.D. Zhang, N.H. March, Phys. Chem. Liq. 49(2), 270 (2011).  https://doi.org/10.1080/00319104.2010.499514
  13. 13.
    Z.D. Zhang, N.H. March, Phys. Chem. Liq. 49(5), 684 (2011).  https://doi.org/10.1080/00319104.2010.517206
  14. 14.
    Z.D. Zhang, N.H. March, J. Math. Chem. 49(7), 1283 (2011).  https://doi.org/10.1007/s10910-011-9820-9
  15. 15.
    Z.D. Zhang, N.H. March, Phase Trans. 84(4), 299 (2011).  https://doi.org/10.1080/01411594.2010.535351
  16. 16.
    Z.D. Zhang, N.H. March, J. Phys. Chem. Solids 72(12), 1529 (2011).  https://doi.org/10.1016/j.jpcs.2011.09.012
  17. 17.
    Z.D. Zhang, N.H. March, J. Math. Chem. 50(4), 920 (2012).  https://doi.org/10.1007/s10910-011-9935-z
  18. 18.
    N.H. March, Z.D. Zhang, J. Math. Chem. 51(7), 1694 (2013).  https://doi.org/10.1007/s10910-013-0181-4
  19. 19.
    Z.D. Zhang, N.H. March, Phys. Chem. Liq. 51(2), 261 (2013).  https://doi.org/10.1080/00319104.2012.753545
  20. 20.
    N.H. March, Z.D. Zhang, Phys. Chem. Liq. 51(6), 742 (2013).  https://doi.org/10.1080/00319104.2013.812023
  21. 21.
    Z.D. Zhang, N.H. March, Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 62(3), 35 (2012), Also available as preprint arXiv:1110.5527 [cond-mat.stat-mech]
  22. 22.
    N.H. March, Phys. Lett. A 378(3), 254 (2014).  https://doi.org/10.1016/j.physleta.2013.10.030
  23. 23.
    N.H. March, Phys. Chem. Liq. 52(5), 697 (2014).  https://doi.org/10.1080/00319104.2014.906600
  24. 24.
    N.H. March, Phys. Lett. A 379(9), 820 (2015).  https://doi.org/10.1016/j.physleta.2014.11.043
  25. 25.
    N.H. March, Phys. Chem. Liq. 54(1), 127 (2016).  https://doi.org/10.1080/00319104.2015.1058943
  26. 26.
    Z.D. Zhang, O. Suzuki, N.H. March, to be published (2018)Google Scholar
  27. 27.
    Z.D. Zhang, Chin. Phys. B 22(3), 030513 (2013).  https://doi.org/10.1088/1674-1056/22/3/030513
  28. 28.
    Z.D. Zhang, Acta Metallurgica Sinica 52, 1311 (2016)Google Scholar
  29. 29.
    B. Kaufman, Phys. Rev. 76(8), 1232 (1949).  https://doi.org/10.1103/PhysRev.76.1232
  30. 30.
    L.H. Kauffman, Knots and Physics (World Scientific, Singapore, 2001)CrossRefMATHGoogle Scholar
  31. 31.
    L.H. Kauffman, Rep. Prog. Phys. 68(12), 2829 (2005).  https://doi.org/10.1088/0034-4885/68/12/R04
  32. 32.
    L.H. Kauffman, in Encyclopedia of Mathematical Physics, ed. by J.P. Françoise, G.L. Naber, T.S. Tsun (Academic Press, Oxford, 2006), pp. 220–231. ISBN 978-0-12-512666-3.  https://doi.org/10.1016/B0-12-512666-2/00240-6
  33. 33.
    F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982).  https://doi.org/10.1103/RevModPhys.54.235
  34. 34.
    Z.D. Zhang, J. Phys.: Conf. Series 827(1), 012001 (2017).  https://doi.org/10.1088/1742-6596/827/1/012001
  35. 35.
    C. Domb, in Phase Transitions and Critical Phenomena, vol. 3 : Series Expansions for Lattice Models, ed. by C. Domb, M.S. Green (Academic Press, London, 1974), chap. 1, pp. 1–96. ISBN 0122203038Google Scholar
  36. 36.
    A.J. Guttmann, I.G. Enting, J. Phys. A 26(4), 807 (1993).  https://doi.org/10.1088/0305-4470/26/4/010
  37. 37.
    G. Bhanot, M. Creutz, I. Horvath, J. Lacki, J. Weckel, Phys. Rev. E 49, 2445 (1994).  https://doi.org/10.1103/PhysRevE.49.2445
  38. 38.
    W. Zhang, A.R. Oganov, A.F. Goncharov, Q. Zhu, S.E. Boulfelfel, A.O. Lyakhov, E. Stavrou, M. Somayazulu, V.B. Prakapenka, Z. Konôpková, Science 342(6165), 1502 (2013).  https://doi.org/10.1126/science.1244989
  39. 39.
    J. Ławrynowicz, S. Marchiafava, A. Niemczynowicz, Adv. Appl. Clifford Alg. 20(3), 733 (2010).  https://doi.org/10.1007/s00006-010-0219-7
  40. 40.
    J. Ławrynowicz, O. Suzuki, A. Niemczynowicz, Adv. Appl. Clifford Alg. 22(3), 757 (2012).  https://doi.org/10.1007/s00006-012-0360-6
  41. 41.
    J. Ławrynowicz, M. Nowak-Kȩpczyk, O. Suzuki, Int. J. Bifurc. Chaos 22(01), 1230003 (2012).  https://doi.org/10.1142/S0218127412300030
  42. 42.
    J. Ławrynowicz, O. Suzuki, A. Niemczynowicz, Int. J. Nonlinear Sci. Numer. Simul. 14(3–4), 211 (2013).  https://doi.org/10.1515/ijnsns-2013-0030
  43. 43.
    G.F. Newell, E.W. Montroll, Rev. Mod. Phys. 25, 353 (1953).  https://doi.org/10.1103/RevModPhys.25.353
  44. 44.
    C. Domb, A.J. Guttmann, J. Phys. C 3(8), 1652 (1970).  https://doi.org/10.1088/0022-3719/3/8/003
  45. 45.
    M.E. Fisher, Rep. Prog. Phys. 30(2), 615 (1967), [31, 418 (1968)]Google Scholar
  46. 46.
    K.G. Wilson, Phys. Rev. B 4, 3174 (1971).  https://doi.org/10.1103/PhysRevB.4.3174
  47. 47.
    K.G. Wilson, J. Kogut, Phys. Rep. 12(2), 75 (1974).  https://doi.org/10.1016/0370-1573(74)90023-4
  48. 48.
    L.P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E.A.S. Lewis, V.V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, J. Kane, Rev. Mod. Phys. 39, 395 (1967).  https://doi.org/10.1103/RevModPhys.39.395
  49. 49.
    L.P. Kadanoff, Phys. Rev. Lett. 34, 1005 (1975).  https://doi.org/10.1103/PhysRevLett.34.1005
  50. 50.
    J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, The Theory of Critical Phenomena (An introduction to the renormalization group (Clarendon Press, Oxford, 1992)MATHGoogle Scholar
  51. 51.
    M.E. Fisher, Rev. Mod. Phys. 70(2), 653 (1998).  https://doi.org/10.1103/RevModPhys.70.653
  52. 52.
    K. Binder, E. Luijten, Renormalization group theory in the new millennium. Phys. Rep. 344(4–6), 179 (2001).  https://doi.org/10.1016/S0370-1573(00)00127-7
  53. 53.
    A. Pelissetto, E. Vicari, Phys. Rep. 368(6), 549 (2002).  https://doi.org/10.1016/S0370-1573(02)00219-3
  54. 54.
    H. Müller-Krumbhaar, K. Binder, J. Stat. Phys. 8(1), 1 (1973).  https://doi.org/10.1007/BF01008440
  55. 55.
    E. Stoll, K. Binder, T. Schneider, Phys. Rev. B 8, 3266 (1973).  https://doi.org/10.1103/PhysRevB.8.3266
  56. 56.
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi, J. Stat. Phys. 157(4), 869 (2014).  https://doi.org/10.1007/s10955-014-1042-7
  57. 57.
    J. Kaupužs, R.V.N. Melnik, J. Rimšāns, Int. J. Mod. Phys. C 28(04), 1750044 (2017), Also available as preprint arXiv:1407.3095 [cond-mat.stat-mech].  https://doi.org/10.1142/S0129183117500449

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangPeople’s Republic of China

Personalised recommendations