Orbital-Free Density Functional Theory: Pauli Potential and Density Scaling

Chapter

Abstract

In orbital-free density functional theory only a single equation, the so-called Euler equation, has to be solved for any system instead of the Kohn–Sham equations. The Euler equation is a Schrödinger-like equation for the square root of the density. This equation contains an extra potential, the so-called Pauli potential, in addition to the usual Kohn–Sham potential. Equations for the Pauli potential, the relationship of the Pauli potential and Pauli energy are reviewed. A derivation of the Euler equation via density scaling is presented.

Notes

Acknowledgements

This research was supported by the EU-funded Hungarian grant EFOP-3.6.2-16-2017-00005 and the National Research, Development and Innovation Fund of Hungary, financed under 123988 funding scheme.

References

  1. 1.
    L.H. Thomas, Math. Proc. Camb. Philos. Soc. 23, 542 (1926).  https://doi.org/10.1017/S0305004100011683
  2. 2.
    E. Fermi, Z. Phys. 48, 73 (1928).  https://doi.org/10.1007/BF01351576
  3. 3.
    P.A.M. Dirac, Proc. Camb. Philos. Soc. 26, 376 (1930).  https://doi.org/10.1017/S0305004100016108
  4. 4.
    P. Gombás, Die statistische Theorie des Atoms und ihre Anwendungen (Springer, Vienna, 1949)CrossRefMATHGoogle Scholar
  5. 5.
    P.C. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).  https://doi.org/10.1103/PhysRev.136.B864
  6. 6.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965).  https://doi.org/10.1103/PhysRev.140.A1133
  7. 7.
    C.F. von Weizsäcker, Z. Phys. 96, 431 (1935).  https://doi.org/10.1007/BF01337700
  8. 8.
    M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30, 2745 (1984).  https://doi.org/10.1103/PhysRevA.30.2745
  9. 9.
    N.H. March, Phys. Lett. A 113(2), 66 (1985); Reprinted in Ref. [39].  https://doi.org/10.1016/0375-9601(85)90654-1
  10. 10.
    N.H. March, Phys. Lett. A 113(9), 476 (1986), Reprinted in Ref. [39]. 10.1016/0375-9601(86)90123-4Google Scholar
  11. 11.
    N.H. March, J. Comput. Chem. 8(4), 375 (1987).  https://doi.org/10.1002/jcc.540080414
  12. 12.
    M. Levy, H. Ou-Yang, Phys. Rev. A 38, 625 (1988).  https://doi.org/10.1103/PhysRevA.38.625
  13. 13.
    C. Herring, M. Chopra, Phys. Rev. A 37, 31 (1988).  https://doi.org/10.1103/PhysRevA.37.31
  14. 14.
    A. Holas, N.H. March, Phys. Rev. A 44, 5521 (1991).  https://doi.org/10.1103/PhysRevA.44.5521
  15. 15.
    A. Nagy, N.H. March, Phys. Chem. Liq. 22(1–2), 129 (1990).  https://doi.org/10.1080/00319109008036419
  16. 16.
    Á. Nagy, Acta Phys. Hung. 70(4), 321 (1991).  https://doi.org/10.1007/BF03054145
  17. 17.
    A. Nagy, N.H. March, Int. J. Quantum Chem. 39(4), 615 (1991).  https://doi.org/10.1002/qua.560390408
  18. 18.
    A. Nagy, N.H. March, Phys. Chem. Liq. 25(1), 37 (1992).  https://doi.org/10.1080/00319109208027285
  19. 19.
    A. Nagy, N.H. March, Phys. Chem. Liq. 38(6), 759 (2000).  https://doi.org/10.1080/00319100008030321
  20. 20.
    N.H. March, A. Nagy, Phys. Rev. A 78, 044501 (2008).  https://doi.org/10.1103/PhysRevA.78.044501
  21. 21.
    N.H. March, A. Nagy, Phys. Rev. A 81, 014502 (2010).  https://doi.org/10.1103/PhysRevA.81.014502
  22. 22.
    N.H. March, A. Nagy, F. Bogár, F. Bartha, Phys. Chem. Liq. 50(3), 412 (2012).  https://doi.org/10.1080/00319104.2012.673721
  23. 23.
    N.H. March, J. Mol. Struct.: THEOCHEM 943(1), 77 (2010) (Conceptual Aspects of Electron Densities and Density Functionals).  https://doi.org/10.1016/j.theochem.2009.10.030
  24. 24.
    V.G. Tsirelson, A.I. Stash, V.V. Karasiev, S. Liu, Comput. Theor. Chem. 1006, 92 (2013).  https://doi.org/10.1016/j.comptc.2012.11.015
  25. 25.
    N.H. March, W.H. Young, Nucl. Phys. 12(3), 237 (1959).  https://doi.org/10.1016/0029-5582(59)90169-5
  26. 26.
    A. Nagy, N.H. March, Phys. Rev. A 40, 554 (1989).  https://doi.org/10.1103/PhysRevA.40.554
  27. 27.
    A. Holas, N.H. March, Phys. Rev. A 51, 2040 (1995); Reprinted in Ref. [39].  https://doi.org/10.1103/PhysRevA.51.2040
  28. 28.
    N.H. March, A. Nagy, J. Chem. Phys. 129(19), 194114 (2008).  https://doi.org/10.1063/1.3013808
  29. 29.
    A. Nagy, Phys. Rev. A 84, 032506 (2011).  https://doi.org/10.1103/PhysRevA.84.032506
  30. 30.
    G.K.L. Chan, N.C. Handy, Phys. Rev. A 59, 2670 (1999).  https://doi.org/10.1103/PhysRevA.59.2670
  31. 31.
    A. Nagy, Chem. Phys. Lett. 411(4), 492 (2005).  https://doi.org/10.1016/j.cplett.2005.06.078
  32. 32.
    A. Nagy, J. Chem. Phys. 123(4), 044105 (2005).  https://doi.org/10.1063/1.1979473
  33. 33.
    J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).  https://doi.org/10.1103/PhysRevLett.49.1691
  34. 34.
    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989). ISBN 9780195092769Google Scholar
  35. 35.
    I. Ekeland, R. Teman, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976)Google Scholar
  36. 36.
    R. van Leeuwen, Adv. Quantum Chem. 43, 25 (2003).  https://doi.org/10.1016/S0065-3276(03)43002-5
  37. 37.
    M. Levy, Proc. Natl. Acad. Sci. 76(12), 6062 (1979)ADSCrossRefGoogle Scholar
  38. 38.
    E.H. Lieb, Int. J. Quantum Chem. 24(3), 243 (1983).  https://doi.org/10.1002/qua.560240302
  39. 39.
    N.H. March, G.G.N. Angilella (eds.), Many-Body Theory of Molecules, Clusters, and Condensed Phases (World Scientific, Singapore, 2009)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of DebrecenDebrecenHungary

Personalised recommendations