From Molecules and Clusters of Atoms to Solid State Properties

  • G. Forte
  • A. Grassi
  • G. M. Lombardo
  • R. Pucci
  • G. G. N. Angilella
Chapter

Abstract

Several structural and electronic properties of solid-state systems can be thought of as emerging from the correlation of individual molecules in suitable clusters, which may be viewed as precursors of the solid phases. This is reviewed through reference to numerous cases studied by N. H. March and collaborators by quantum chemical methods.

Notes

Acknowledgements

It is a pleasure to congratulate Professor Norman H. March on his 90th birthday. The University of Catania has been honoured to have been regarded by him as one of his ‘fixed points’ over the last two decades. The authors are all indebted with him for his scientific direction, for sharing his tremendous physical and chemical insight, as well as for much motivation and invaluable friendship over the years.

References

  1. 1.
    P.W. Anderson, Science 177(4047), 393 (1972).  https://doi.org/10.1126/science.177.4047.393
  2. 2.
    C. Liu, Phil. Sci. 66, S92 (1999).  https://doi.org/10.1086/392718
  3. 3.
    B. Farid, in Electron Correlation in the Solid State, Chap. 3 ed. by N.H. March (Imperial College, London, 1999), . ISBN 9781860944079Google Scholar
  4. 4.
    N.H. March, G.G.N. Angilella, Exactly Solvable Models in Many-Body Theory (World Scientific, Singapore, 2016)Google Scholar
  5. 5.
    T. Krüger, Int. J. Quantum Chem. 106(8), 1865 (2006).  https://doi.org/10.1002/qua.20948
  6. 6.
    P.P. Bera, P. von R. Schleyer, H.F. Schaefer III, Int. J. Quantum Chem. 107(12), 2220 (2007).  https://doi.org/10.1002/qua.21322
  7. 7.
    G. Forte, A. Grassi, G.M. Lombardo, G.G.N. Angilella, N.H. March, R. Pucci, Phys. Lett. A 372, 3253 (2008).  https://doi.org/10.1016/j.physleta.2008.01.046
  8. 8.
    N.H. March, Acta Cryst. 5(2), 187 (1952), Reprinted in Ref. [57].  https://doi.org/10.1107/S0365110X52000551
  9. 9.
    N.H. March, Adv. Phys. 6(21), 1 (1957).  https://doi.org/10.1080/00018735700101156
  10. 10.
    N.H. March, in Theory of the Inhomogeneous Electron Gas, Chap. 1 ed. by S. Lundqvist, N.H. March (Springer, New York, 1983), p. 1.  https://doi.org/10.1007/978-1-4899-0415-7_1
  11. 11.
    G. Forte, A. Grassi, G.M. Lombardo, A. La Magna, G.G.N. Angilella, R. Pucci, R. Vilardi, Phys. Lett. A 372, 6168 (2008).  https://doi.org/10.1016/j.physleta.2008.08.014
  12. 12.
    F.M.D. Pellegrino, G.G.N. Angilella, R. Pucci, Phys. Rev. B 80, 094203 (2009).  https://doi.org/10.1103/PhysRevB.80.094203
  13. 13.
    G. Forte, A. Grassi, G.M. Lombardo, G.G.N. Angilella, N.H. March, R. Pucci, Phys. Chem. Liquids 47, 599 (2009).  https://doi.org/10.1080/00319100903045874
  14. 14.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mat. 6, 652 (2007).  https://doi.org/10.1038/nmat1967
  15. 15.
    D. Cohen-Tanugi, J.C. Grossman, Nano Lett. 12(7), 3602 (2012).  https://doi.org/10.1021/nl3012853
  16. 16.
    X.Q. Chen, C.L. Fu, C. Franchini, J. Phys.: Cond. Matter 22(29), 292201 (2010).  https://doi.org/10.1088/0953-8984/22/29/292201
  17. 17.
    G. Forte, G.G.N. Angilella, V. Pittalà, N.H. March, R. Pucci, Phys. Chem. Liq. 50, 46 (2012).  https://doi.org/10.1080/00319104.2010.544019
  18. 18.
    A. Carvalho, R. Jones, M. Sanati, S.K. Estreicher, J. Coutinho, P.R. Briddon, Phys. Rev. B 73(24), 245210 (2006).  https://doi.org/10.1103/PhysRevB.73.245210
  19. 19.
    G. Forte, G.G.N. Angilella, N.H. March, R. Pucci, Chem. Phys. Lett. 608, 269 (2014).  https://doi.org/10.1016/j.cplett.2014.06.020
  20. 20.
    S. Saito, T. Ono, Jpn. J. Appl. Phys. 50(2R), 021503 (2011).  https://doi.org/10.1143/JJAP.50.021503
  21. 21.
    G. Forte, G.G.N. Angilella, V. Pittalà, N.H. March, R. Pucci, Phys. Lett. A 376(4), 476 (2012).  https://doi.org/10.1016/j.physleta.2011.11.049
  22. 22.
    M. Martinez-Canales, A.R. Oganov, Y. Ma, Y. Yan, A.O. Lyakhov, A. Bergara, Phys. Rev. Lett. 102, 087005 (2009).  https://doi.org/10.1103/PhysRevLett.102.087005
  23. 23.
    W. Cui, J. Shi, H. Liu, Y. Yao, H. Wang, T. Iitaka, Y. Ma, 5, 13039 (2015).  https://doi.org/10.1038/srep13039
  24. 24.
    T.A. Strobel, M. Somayazulu, R.J. Hemley, Phys. Rev. Lett. 103, 065701 (2009).  https://doi.org/10.1103/PhysRevLett.103.065701
  25. 25.
    X.J. Chen, V.V. Struzhkin, Y. Song, A.F. Goncharov, M. Ahart, Z. Liu, H.k. Mao, R.J. Hemley, Proc. Natl. Acad. Sci. 105(1), 20 (2008).  https://doi.org/10.1073/pnas.0710473105
  26. 26.
    G. Forte, G.G.N. Angilella, N.H. March, R. Pucci, Phys. Lett. A 374, 580 (2010).  https://doi.org/10.1016/j.physleta.2009.11.039
  27. 27.
    A. Grassi, G.M. Lombardo, G. Forte, G.G.N. Angilella, R. Pucci, N.H. March, Mol. Phys. 104, 1447 (2006).  https://doi.org/10.1080/00268970500509899
  28. 28.
    A. Grassi, G.M. Lombardo, G.G.N. Angilella, G. Forte, N.H. March, C. Van Alsenoy, R. Pucci, Phys. Chem. Liq. 46(5), 484 (2008).  https://doi.org/10.1080/00319100701790069
  29. 29.
    A. Grassi, G.M. Lombardo, R. Pucci, G.G.N. Angilella, F. Bartha, N.H. March, Chem. Phys. 297(1), 13 (2004).  https://doi.org/10.1016/j.chemphys.2003.10.001
  30. 30.
    C.C. Matthai, N.H. March, J. Phys. Chem. Solids 58(5), 765 (1997).  https://doi.org/10.1016/S0022-3697(96)00197-7
  31. 31.
    C.A. Coulson, I. Fischer, Phil. Mag. 40(303), 386 (1949).  https://doi.org/10.1080/14786444908521726
  32. 32.
    G. Baskaran, in Many-Body Approaches at Different Scales: A Tribute to Norman H. March on the Occasion of His 90th Birthday, Chap. 5 ed. by G.G.N. Angilella, C. Amovilli (Springer, New York, 2018), p. 43. (This volume.).  https://doi.org/10.1007/978-3-319-72374-7_5
  33. 33.
    A. Grassi, G.M. Lombardo, G.G.N. Angilella, N.H. March, R. Pucci, J. Chem. Phys. 120(24), 11615 (2004).  https://doi.org/10.1063/1.1729954
  34. 34.
    A. Kornath, A. Kaufmann, A. Zoermer, R. Ludwig, J. Chem. Phys. 118(15), 6957 (2003).  https://doi.org/10.1063/1.1555800
  35. 35.
    Y. Freiman, H.J. Jodl, Phys. Rep. 401(1), 1 (2004).  https://doi.org/10.1016/j.physrep.2004.06.002
  36. 36.
    I.N. Goncharenko, O.L. Makarova, L. Ulivi, Phys. Rev. Lett. 93(5), 055502 (2004).  https://doi.org/10.1103/PhysRevLett.93.055502
  37. 37.
    G. Forte, G.G.N. Angilella, N.H. March, R. Pucci, Phys. Lett. A 377, 801 (2013).  https://doi.org/10.1016/j.physleta.2013.01.036
  38. 38.
    K. Shimizu, K. Suhara, M. Ikumo, M.I. Eremets, K. Amaya, Nature 393, 767 (1998).  https://doi.org/10.1038/31656
  39. 39.
    J.F. Mucci, N.H. March, J. Chem. Phys. 71, 5270 (1979), Reprinted in Ref. [57].  https://doi.org/10.1063/1.438338
  40. 40.
    A. Grassi, G.M. Lombardo, G.G.N. Angilella, N.H. March, R. Pucci, D.J. Klein, A.T. Balaban, Phys. Chem. Liq. 52, 354 (2014).  https://doi.org/10.1080/00319104.2014.862058
  41. 41.
    A.I. Boldyrev, L. Wang, Chem. Rev. 105(10), 3716 (2005).  https://doi.org/10.1021/cr030091t
  42. 42.
    Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P.v.R. Schleyer, Chem. Rev. 105(10), 3842 (2005).  https://doi.org/10.1021/cr030088+
  43. 43.
    L. Pauling, J. Chem. Phys. 1(1), 56 (1933).  https://doi.org/10.1063/1.1749219
  44. 44.
    P.V.R. Schleyer (ed.). Chemical Reviews. Special issue on Antiaromaticity, vol. 101(5) (American Chemical Society, Washington, 2001)Google Scholar
  45. 45.
    M. Randić, Chem. Rev. 103(9), 3449 (2003).  https://doi.org/10.1021/cr9903656
  46. 46.
    D.P. Shelton, J. Chem. Phys. 141(22), 224506 (2014).  https://doi.org/10.1063/1.4903541
  47. 47.
    P. Kumar, G. Franzese, S.V. Buldyrev, H.E. Stanley, Phys. Rev. E 73, 041505 (2006).  https://doi.org/10.1103/PhysRevE.73.041505
  48. 48.
    F. Mallamace, P. Baglioni, C. Corsaro, S.H. Chen, D. Mallamace, C. Vasi, H.E. Stanley, J. Chem. Phys. 141(16), 165104 (2014).  https://doi.org/10.1063/1.4900500
  49. 49.
    I.A. Howard, G.G.N. Angilella, N.H. March, C. Van Alsenoy, Phys. Chem. Liq. 42(4), 403 (2004).  https://doi.org/10.1080/00319100410001697855
  50. 50.
    I.A. Howard, G.G.N. Angilella, N.H. March, C. Van Alsenoy, Phys. Chem. Liq. 43(5), 441 (2005).  https://doi.org/10.1080/00319100500184043
  51. 51.
    J. Li, D. Londono, D.K. Ross, J.L. Finney, S.M. Bennington, A.D. Taylor, J. Phys.: Condens. Matter 4(9), 2109 (1992).  https://doi.org/10.1088/0953-8984/4/9/005
  52. 52.
    J.E. Bertie, E. Whalley, J. Chem. Phys. 40(6), 1637 (1964).  https://doi.org/10.1063/1.1725373
  53. 53.
    J.E. Bertie, E. Whalley, J. Chem. Phys. 40(6), 1646 (1964).  https://doi.org/10.1063/1.1725374
  54. 54.
    C.J. Tsai, K.D. Jordan, J. Chem. Phys. 95(5), 3850 (1991).  https://doi.org/10.1063/1.460788
  55. 55.
    B. Rousseau, C. Van Alsenoy, A. Peeters, F. Bogár, G. Parasi, J. Mol. Structure (Theochem) 666-667(Supplement C), 41 (2003).  https://doi.org/10.1016/j.theochem.2003.08.011
  56. 56.
    X. Qu, P.J.J. Alvarez, Q. Li, Nanotechnology for water and wastewater treatment. Water Res. 47(12), 3931 (2013).  https://doi.org/10.1016/j.watres.2012.09.058
  57. 57.
    N.H. March, G.G.N. Angilella (eds.), Many-Body Theory of Molecules, Clusters, and Condensed Phases (World Scientific, Singapore, 2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • G. Forte
    • 1
  • A. Grassi
    • 1
  • G. M. Lombardo
    • 1
  • R. Pucci
    • 2
  • G. G. N. Angilella
    • 2
    • 3
  1. 1.Dipartimento di Scienze del FarmacoUniversità di CataniaCataniaItaly
  2. 2.Dipartimento di Fisica e AstronomiaUniversità di Catania, and IMM-CNR, UdR CataniaCataniaItaly
  3. 3.Scuola Superiore di CataniaUniversità di CataniaCataniaItaly

Personalised recommendations