A Non-crossing Word Cooperad for Free Homotopy Probability Theory

Chapter
Part of the MATRIX Book Series book series (MXBS, volume 1)

Abstract

We construct a cooperad which extends the framework of homotopy probability theory to free probability theory. The cooperad constructed, which seems related to the sequence and cactus operads, may be of independent interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author gratefully acknowledges useful conversations with Joey Hirsh, John Terilla, Jae-Suk Park, and Ben Ward. An anonymous referee made multiple useful observations.

This work was supported by IBS-R003-D1.

References

  1. 1.
    Berger, C., Fresse, B.: Combinatorial operad actions on cochains. Math. Proc. Camb. Philos. Soc. 137, 135–174 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Drummond-Cole, G.C.: An operadic approach to operator-valued free cumulants (2016). http://arxiv.org/abs/arxiv:1607.04933
  3. 3.
    Drummond-Cole, G.C., Terilla, J.: Cones in homotopy probability theory (2014). http://arxiv.org/abs/1410.5506
  4. 4.
    Drummond-Cole, G.C., Park, J.S., Terilla, J.: Homotopy probability theory I. J. Homotopy Relat. Struct. 10, 425–435 (2015). http://link.springer.com/article/10.1007/s40062-013- 0067-y MathSciNetCrossRefGoogle Scholar
  5. 5.
    Drummond-Cole, G.C., Park, J.S., Terilla, J.: Homotopy probability theory II. J. Homotopy Relat. Struct. 10, 623–635 (2015). http://link.springer.com/article/10.1007/s40062-014- 0078-3 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gálvez-Carrillo, I., Lombardi, L., Tonks, A.: An \(\mathcal {A}_\infty \) operad in spineless cacti. Mediterr. J. Math. 12(4), 1215–1226 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces (1994). http://arxiv.org/abs/hep-th/9403055
  8. 8.
    Kaufmann, R.M.: On several varieties of cacti and their relations. Algebr. Geom. Topol. 5, 237–300 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kaufmann, R.M.: On spineless cacti, Deligne’s conjecture and Connes–Kreimer’s Hopf algebra. Topology 46(1), 39–88 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    McClure, J.E., Smith, J.H.: Multivariable cochain operations and little n-cubes. J. Am. Math. Soc. 16(3), 681–704 (2003)Google Scholar
  11. 11.
    Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335. Cambridge University Press, Cambridge (2006)Google Scholar
  12. 12.
    Novak, J., Śniady, P.: What is…a free cumulant? Not. Am. Math. Soc. 58(2), 300–301 (2011)Google Scholar
  13. 13.
    Park, J.S.: Flat family of QFTs and quantization of d-algebras (2003). http://arxiv.org/abs/hep-th/0308130
  14. 14.
    Park, J.S.: Einstein chair lecture (2011). City University of New YorkGoogle Scholar
  15. 15.
    Park, J.S.: Homotopy theory of probability spaces I: classical independence and homotopy Lie algebras (2015). http://arxiv.org/abs/1510.08289
  16. 16.
    Smirnov, V.: On the cochain complex of topological spaces. Math. USSR Sbornik 43, 133–144 (1982)CrossRefGoogle Scholar
  17. 17.
    Tao, T.: Algebraic probability spaces (2014). https://terrytao.wordpress.com/2014/06/28/algebraic-probability-spaces/. Blog post
  18. 18.
    Voiculescu, D.: Symmetries of some reduced free product C ∗-algebras. In: Operator Algebras and Their Connections with Topology and Ergodic Theory: Proceedings of the OATE Conference Held in Buşteni, Romania, Aug 29–Sept 9, 1983. Lecture Notes in Mathematics, vol. 1132, pp. 556–588. Springer, Berlin (1985)Google Scholar
  19. 19.
    Voiculescu, D.: Free probability and the von Neumann algebras of free groups. Rep. Math. Phys. 55(1), 127–133 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Voronov, A.A.: Notes on universal algebra. In: Graphs and Patterns in Mathematics and Theoretical Physics. Proceedings of Symposia in Pure Mathematics, vol. 73, pp. 81–103. American Mathematical Society, Providence, RI (2005)Google Scholar
  21. 21.
    Zinbiel, G.W.: Encyclopedia of types of algebras 2010. In: Operads and Universal Algebra. Nankai Series in Pure Applied Mathematical Theoretical Physics, vol. 9, pp. 217–298. World Scientific Publishing, Singapore (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Geometry and PhysicsInstitute for Basic Science (IBS)PohangRepublic of Korea

Personalised recommendations