Advertisement

Corneal Wavefront-Guided Ablation

  • Shady T. Awwad
  • Sam Arba Mosquera
  • Shweetabh Verma
Chapter

Abstract

Corneal Wavefront-Guided (CWG) laser ablation is a form of Topography-guided procedure that translates Topography to Wavefront aberrations. Treating the latter in a selective fashion offers the possibility of consuming less stromal tissue, hence minimizing postoperative refractive surprises, leaving more room for a more precise enhancement, reducing both the corneal biomechanical impact and response. This chapter explains the theoretical and clinical concepts behind corneal Wavefront-guided ablation vis-a-vis Topography-guided and ocular Wavefront-guided treatments, and offers step-by-step, concrete guidelines to implement it in daily practice.

Keywords

Wavefront-optimised Corneal wavefront-guided Ocular wavefront-guided Topography-guided Aberration neutral treatment Aspheric laser ablation Lower order aberrations (LOAs) Higher order aberrations (HOAs) 

References

  1. 1.
    Mrochen M, Kaemmerer M, Seiler T. Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery. J Cataract Refract Surg. 2001;27:201–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Liang J, Grimm B, Goelz S, Bille JF. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-shack wave-front sensor. J Opt Soc Am A Opt Image Sci Vis. 1994;11:1949–57.CrossRefPubMedGoogle Scholar
  3. 3.
    Tscherning M. Die monochromatischen Aberratoinen des menschlichen. Auges Z Psychol Physiol Sinn. 1894;6:456–71.Google Scholar
  4. 4.
    Hartmann J. Bemerkungen ueber den Bau und die Justierung von Spktrographen. Zeitschrift fuer Instrumentenkunde. 1900;20:47.Google Scholar
  5. 5.
    Shack RB, Platt BC. Production and use of a lenticular Hartmann screen. J Opt Soc Am. 1971;61:656.Google Scholar
  6. 6.
    MacRae S, Fujieda M. Slit skiascopic-guided ablation using the Nidek laser. J Refract Surg. 2000;16:S576–80.PubMedGoogle Scholar
  7. 7.
    Burns SA. The spatially resolved refractometer. J Refract Surg. 2000;16:S566–9.PubMedGoogle Scholar
  8. 8.
    Akondi V, Castillo S, Vohnsen B. Digital pyramid wavefront sensor with tunable modulation. Opt Express. 2013;21(15):18261–72.  https://doi.org/10.1364/OE.21.018261.CrossRefPubMedGoogle Scholar
  9. 9.
    Plantet C, Meimon S, Conan JM, Fusco T. Revisiting the comparison between the shack-Hartmann and the pyramid wavefront sensors via the fisher information matrix. Opt Express. 2015;23(22):28619–33.  https://doi.org/10.1364/OE.23.028619.CrossRefPubMedGoogle Scholar
  10. 10.
    Alio JL, Belda JI, Osman AA, Shalaby AM. Topography-guided laser in situ keratomileusis (TOPOLINK) to correct irregular astigmatism after previous refractive surgery. J Refract Surg. 2003;19:516–27.PubMedGoogle Scholar
  11. 11.
    Salmon TO. Corneal contribution to the Wavefront aberration of the eye. PhD Dissertation; 1999, p. 70.Google Scholar
  12. 12.
    Mrochen M, Jankov M, Bueeler M, Seiler T. Correlation between corneal and total wavefront aberrations in myopic eyes. J Refract Surg. 2003;19:104–12.PubMedGoogle Scholar
  13. 13.
    Arba-Mosquera S, Arbelaez MC, Merayo-Llovés J. Six-month clinical outcomes of customized treatments minimized for depth and time in laser corneal refractive surgery. Cornea. 2011;30(8):876–88.CrossRefPubMedGoogle Scholar
  14. 14.
    Arbelaez MC, Ewering T, Arba Mosquera S. Decision assistant wizard to standardize optimal outcomes in excimer laser refractive corneal surgery. J Refract Surg. 2010;26(12):980–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Subbaram MV, MacRae SM. Customized LASIK treatment for myopia based on preoperative manifest refraction and higher order aberrometry: the Rochester nomogram. J Refract Surg. 2007;23(5):435–41.PubMedGoogle Scholar
  16. 16.
    Kanellopoulos AJ. Comparison of sequential vs same-day simultaneous collagen cross-linking and topography-guided PRK for treatment of keratoconus. J Refract Surg. 2009;25(9):S812–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Dupps WJ, Roberts C. Effect of acute biomechanical changes on corneal curvature after photokeratectomy. J Refract Surg. 2001;17(6):658–69.PubMedGoogle Scholar
  18. 18.
    Arba Mosquera S, Ewering T. New asymmetric centration strategy combining pupil and corneal vertex information for ablation procedures in refractive surgery: theoretical background. J Refract Surg. 2012;28(8):567–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Levy Y, Segal O, Avni I, Zadok D. Ocular higher-order aberrations in eyes with supernormal vision. Am J Ophthalmol. 2005;139:225–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Applegate RA, Howland HC. Refractive surgery, optical aberrations, and visual performance. J Refract Surg. 1997;13:295–9.PubMedGoogle Scholar
  21. 21.
    Gambra E, Sawides L, Dorronsoro C, Marcos S. Accommodative lag and fluctuations when optical aberrations are manipulated. J Vis. 2009;9:1–15.CrossRefPubMedGoogle Scholar
  22. 22.
    Held R. The rediscovery of adaptability in the visual system: effects of extrinsic and intrinsic chromatic dispersion. In: Harris CS, editor. Visual coding and adaptability. Hillsdalle, NJ: Lawrence Erbaum Associates; 1980.Google Scholar
  23. 23.
    Artal P, Chen L, Fernandez EJ, Singer B, Manzanera S, Williams DR. Neural compensation for the eye’s optical aberrations. J Vis. 2004;4:281–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Lee H, Park SY, Yong Kang DS, Ha BJ, Choi JY, Kim EK, Seo KY, Kim TI. Photorefractive keratectomy combined with corneal wavefront-guided and hyperaspheric ablation profiles to correct myopia. J Cataract Refract Surg. 2016;42(6):890–8.  https://doi.org/10.1016/j.jcrs.2016.03.033.CrossRefPubMedGoogle Scholar
  25. 25.
    Camellin M, Guidotti JM, Arba Mosquera S. Corneal-Wavefront guided transepithelial photorefractive keratectomy after corneal collagen cross linking in keratoconus. J Optom. 2017;10(1):52–62.  https://doi.org/10.1016/j.optom.2016.02.001.CrossRefPubMedGoogle Scholar
  26. 26.
    Imamoglu S, Kaya V, Oral D, Perente I, Basarir B, Yilmaz OF. Corneal wavefront-guided customized laser in situ keratomileusis after penetrating keratoplasty. J Cataract Refract Surg. 2014;40(5):785–92.  https://doi.org/10.1016/j.jcrs.2013.10.042.CrossRefPubMedGoogle Scholar
  27. 27.
    Jun I, Kang DS, Tan J, Choi JY, Heo W, Kim JY, Lee MG, Kim EK, Seo KY, Kim TI. Comparison of clinical outcomes between wavefront-optimized versus corneal wavefront-guidedtransepithelial photorefractive keratectomy for myopic astigmatism. J Cataract Refract Surg. 2017;43(2):174–82.CrossRefPubMedGoogle Scholar
  28. 28.
    Alió J, Galal A, Montalbán R, Piñero D. Corneal wavefront-guided LASIK retreatments for correction of highly aberrated corneas following refractive surgery. J Refract Surg. 2007;23(8):760–73.PubMedGoogle Scholar
  29. 29.
    Alió JL, Piñero DP, Plaza Puche AB. Corneal wavefront-guided photorefractive keratectomy in patients with irregular corneas after corneal refractive surgery. J Cataract Refract Surg. 2008;34(10):1727–35.CrossRefPubMedGoogle Scholar
  30. 30.
    Padmanabhan P, Mrochen M, Basuthkar S, Viswanathan D, Joseph R. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study. J Cataract Refract Surg. 2008;34(3):389–97.CrossRefPubMedGoogle Scholar
  31. 31.
    Lipshitz I. Thirty-four challenges to meet before excimer laser technology can achieve super vision. J Refract Surg. 2002;18(6):740–3.PubMedGoogle Scholar
  32. 32.
    Marcos S. Aberrations and visual performance following standard laser vision correction. J Refract Surg. 2001;17(5):S596–601.PubMedGoogle Scholar
  33. 33.
    Durrie DS, Kezirian GM. Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study. J Cataract Refract Surg. 2005;31(1):120–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Tran DB, Sarayba MA, Bor Z, Garufis C, Duh YJ, Soltes CR, Juhasz T, Kurtz RM. Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: potential impact on wavefront-guided laser in situ keratomileusis. J Cataract Refract Surg. 2005;31(1):97–105.CrossRefPubMedGoogle Scholar
  35. 35.
    Uozato H, Guyton DL. Centering corneal surgical procedures. Am J Ophthalmol. 1987;103(3 Pt 1):264–75.PubMedGoogle Scholar
  36. 36.
    Guirao A, Williams DR, Cox IG. Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations. J Opt Soc Am A Opt Image Sci Vis. 2001;18(5):1003–15.CrossRefPubMedGoogle Scholar
  37. 37.
    Guirao A, Williams DR, MacRae SM. Effect of beam size on the expected benefit of customized laser refractive surgery. J Refract Surg. 2003;19(1):15–23.PubMedGoogle Scholar
  38. 38.
    Huang D, Arif M. Spot size and quality of scanning laser correction of higher-order wavefront aberrations. J Cataract Refract Surg. 2002;28(3):407–16.CrossRefPubMedGoogle Scholar
  39. 39.
    Tsai YY, Lin JM. Ablation centration after active eye-tracker-assisted photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg. 2000;26(1):28–34.CrossRefPubMedGoogle Scholar
  40. 40.
    Bueeler M, Mrochen M. Simulation of eye-tracker latency, spot size, and ablation pulse depth on the correction of higher order wavefront aberrations with scanning spot laser systems. J Refract Surg. 2005;21(1):28–36.PubMedGoogle Scholar
  41. 41.
    Yoon G, Macrae S, Williams DR, Cox IG. Causes of spherical aberration induced by laser refractive surgery. J Cataract Refract Surg. 2005;31(1):127–35.CrossRefPubMedGoogle Scholar
  42. 42.
    Marcos S, Cano D, Barbero S. Increase in corneal asphericity after standard laser in situ keratomileusis for myopia is not inherent to the Munnerlyn algorithm. J Refract Surg. 2003;19(5):S592–6.PubMedGoogle Scholar
  43. 43.
    Dorronsoro C, Cano D, Merayo-Lloves J, Marcos S. Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape. Opt Express. 2006;14(13):6142–56.CrossRefPubMedGoogle Scholar
  44. 44.
    Arba-Mosquera S, de Ortueta D. Geometrical analysis of the loss of ablation efficiency at non-normal incidence. Opt Express. 2008;16(6):3877–95.CrossRefPubMedGoogle Scholar
  45. 45.
    Arba Mosquera S, Awwad ST. Theoretical analyses of the refractive implications of transepithelial PRK ablations. Br J Ophthalmol. 2013;97(7):905–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shady T. Awwad
    • 1
  • Sam Arba Mosquera
    • 2
  • Shweetabh Verma
    • 2
  1. 1.Cornea and Refractive Surgery Division, Department of OphthalmologyAmerican University of Beirut Medical CenterBeirutLebanon
  2. 2.Research and Development DepartmentSchwind Eye-Tech-SolutionsKleinostheimGermany

Personalised recommendations