Introduction to Astigmatism and Corneal Irregularities

  • Mazen M. Sinjab


A good knowledge of the geometry of the human eye in general and the cornea, is important for customized laser vision correction (CLVC). The difference between optical, visual, pupillary, and achromatic axes, in addition to line of sight, angles kappa, alpha and lambda, is important for understanding the basics of CLVC. The same can be said about corneal dimensions, zones, shape and power.

CLVC aims at improving both quality and quantity of vision by correcting the lower order aberrations (refractive errors) and the higher order aberrations (HOAs). The HOAs are induced by irregularity and asymmetry in the optical system of the eye. To understand the HOAs and their role in the management, definitions, classifications, and etiology of astigmatism, particularly the irregular type, should be understood.

Irregular astigmatism is evaluated subjectively and objectively. The evaluation starts from suspicion and goes through subjective refraction before it ends with ancillary tests, the most important being corneal topography/tomography and aberrometry. The former is essential to confirm the diagnosis, study the tomographic patterns of corneal maps and define ectatic corneal diseases (ECDs).

Objective corneal dioptric power (ODP) is a new concept. It measures the potential power of the cornea in reference to an average K reading of the normal population. This concept is based on understanding the factors affecting corneal power measurement and the types of corneal power maps. Calculating the ODP helps in understanding how the laser ablation profile works.


Optical axis Visual axis Pupillary axis Achromatic axis Line of sight Angle kappa Angle lambda Angle alpha Astigmatism Topography Tomography Keratoconus Pellucid marginal degeneration Pellucid-like keratoconus Keratoglobus Ectasia Forme fruste keratoconus Keratoconus suspect Posterior keratoconus Enantiomorphism 


  1. 1.
    Mosquera SA, Verma S, McAlinden C. Centration axis in refractive surgery. Eye Vis. 2015;2:4. Scholar
  2. 2.
    Miller D, Gurland JE, Isby EK, et al. Human eye as an optical system. In:American Academy of Ophthalmology Basic and Clinical Sciences Course. San Francisco: American Academy of Ophthalmology; 1988-1990. p. 108–9.Google Scholar
  3. 3.
    Ferris J. Gross structure. In:Basic sciences in ophthalmology: a self assessment text. 2nd ed. London: BMJ Publishing Group; 1999. p. 18.Google Scholar
  4. 4.
    Harvey EM, Dobson V, Miller JM. Prevalence of high astigmatism, eyeglass wear, and poor visual acuity among native American grade school children. Optom Vis Sci. 2006;83:206–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Srivannaboon S, Chotikavanich S. Corneal characteristics in myopic patients. J Med Assoc Thail. 2005;88:1222–7.Google Scholar
  6. 6.
    Gudmundsdottir E, Arnarsson A, Jonasson F. Five-year refractive changes in an adult population: Reykjavik eye study. Ophthalmology. 2005;112:672–7.CrossRefPubMedGoogle Scholar
  7. 7.
  8. 8.
    Gatinel D, Haouat M, Hoang-Xuan T. A review of mathematical descriptors of corneal asphericity. J Fr Ophtalmol. 2002;25:81–90.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Boxer W, Huynh VN, El-Shiaty AF, et al. Evaluation of corneal functional optical zone after laser in situ keratomileusis. J Cataract Refract Surg. 2002;28:948–53.CrossRefGoogle Scholar
  10. 10.
    Holladay JT, Janes JA. Topographic changes in corneal asphericity and effective optical zone after laser in situ keratomileusis. J Cataract Refract Surg. 2002;28:942–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Gatinel D, Malet J, Hoang-Xuan T, et al. Analysis of customized corneal ablations: theoretical limitations of increasing negative asphericity. Invest Ophthalmol Vis Sci. 2002;43:941–8.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Haouat M, Gatinel D, Duong MH, et al. Corneal asphericity in myopes. J Fr Ophtalmol. 2002;25:488–92.PubMedGoogle Scholar
  13. 13.
    Gatinel D, Malet J, Hoang-Xuan T, et al. Corneal asphericity change after excimer laser hyperopic surgery: theoretical effects on corneal profiles and corresponding Zernike expansions. Invest Ophthalmol Vis Sci. 2004;45:1349–59.CrossRefPubMedGoogle Scholar
  14. 14.
    Jimenez JR, Anera RG, Diaz JA, et al. Corneal asphericity after refractive surgery when the Munnerlyn formula is applied. J Opt Soc Am A Opt Image Sci Vis. 2004;21:98–103.CrossRefPubMedGoogle Scholar
  15. 15.
    Holladay JT. Detecting Forme Fruste keratoconus with the Pentacam. Supplement to CRST. 2008;11:12.Google Scholar
  16. 16.
    Benes P, Synek S, Petrova S. Corneal shape and eccentricity in population. Coll Antropol. 2013;1:117–20.Google Scholar
  17. 17.
    GH B, Haigis W, Steinmueller A, et al. Distribution of corneal spherical aberration in a comprehensive ophthalmology practice and whether keratometry can predict aberration values. J Cataract Refract Surg. 2007;33(5):848–58.CrossRefGoogle Scholar
  18. 18.
    Holladay JT. Effect of corneal asphericity and spherical aberration on intraocular lens power calculations. J Cataract Refract Surg. 2015;41(7):1553–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Saleh-Mabed I, Saad A, Gattine D. Topography of the corneal epithelium and Bowman layer in low to moderately myopic eyes. J Cataract Refract Surg. 2016;42:1190–7.CrossRefGoogle Scholar
  20. 20.
    Guilbert E, Saad A, Grise-Dulac A, et al. Corneal thickness, curvature, and elevation readings in normal corneas: combined Placido–Scheimpflug system versus combined Placido–scanning-slit system. J Cataract Refract Surg. 2012;38(7):1198–206.CrossRefPubMedGoogle Scholar
  21. 21.
    Huang J, Savini G, Hu L, et al. Precision of a new Scheimpflug and Placido-disk analyzer in measuring corneal thickness and agreement with ultrasound pachymetry. J Cataract Refract Surg. 2013;39(2):219–24.CrossRefPubMedGoogle Scholar
  22. 22.
    Feizi S, Jafarinasab MR, Karimian F, et al. Central and peripheral corneal thickness measurement in normal and Keratoconic eyes using three corneal Pachymeters. J Ophthal Vis Res. 2014;9(3):296–304. Scholar
  23. 23.
    Feng MT, Kim JT, Ambrósio R Jr, et al. International values of central Pachymetry in normal subjects by rotating Scheimpflug camera. Asia Pac J Ophthalmol (Phila). 2012;1(1):13–8. Scholar
  24. 24.
    Rabinowitz YS, Rasheed K. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J Cataract Refract Surg. 1999;25:1327–35.CrossRefPubMedGoogle Scholar
  25. 25.
    Rabinowitz YS, Nesburn AB, McDonnell PJ. Videokeratography of the fellow eye in unilateral keratoconus. Ophthalmology. 1993;100:181–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Li X, Yang H, Rabinowitz YS. Keratoconus: classification scheme based on Videokeratography and clinical signs. J Cataract Refract Surg. 2009;35(9):1597–603.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rabinowitz YS. Videokeratographic indices to aid in screening for keratoconus. J Refract Surg. 1995;11(5):371–9.PubMedGoogle Scholar
  28. 28.
    Park CY, Oh SY, Chuck RS. Measurement of angle kappa and centration in refractive surgery. Curr Opin Ophthalmol. 2012;23:269–75.CrossRefPubMedGoogle Scholar
  29. 29.
    Basmak H, Sahin A, Yildirim N, et al. Measurement of angle kappa with synoptophore and Orbscan II in a normal population. J Refract Surg. 2007;23:456–60.PubMedGoogle Scholar
  30. 30.
    Pande M, Hillman JS. Optical zone centration in keratorefractive surgery. Entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal center? Ophthalmology. 1993;100:1230–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Prakash G, Prakash DR, Agarwal A, et al. Predictive factor and kappa angle analysis for visual satisfactions in patients with multifocal IOL implantation. Eye (Lond). 2011;25:1187–93.CrossRefGoogle Scholar
  32. 32.
    Hayashi K, Hayashi H, Nakao F, et al. Correlation between pupillary size and intraocular lens decentration and visual acuity of a zonal-progressive multifocal lens and a monofocal lens. Ophthalmology. 2001;108:2011–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Karhanová M, Marešová K, Pluhácek F, et al. The importance of angle kappa for centration of multifocal intraocular lenses. Cesk Slov Oftalmol. 2013;69(2):64–8.PubMedGoogle Scholar
  34. 34.
    Hashemi H, Khabazkhoob M, Yazdani K, et al. Distribution of angle kappa measurements with Orbscan II in a population-based survey. J Refract Surg. 2010;26:966–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Gharaee H, Shafiee M, Hoseini R, et al. Angle kappa measurements: normal values in healthy Iranian population obtained with the Orbscan II. Iran Red Crescent Med J. 2015;17(1):e17873. Scholar
  36. 36.
    Basmak H, Sahin A, Yildirim N, et al. The angle kappa in strabismic individuals. Strabismus. 2007;15:193–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Kermani O, Schmeidt K, Oberheide U, et al. Hyperopic laser in situ keratomileusis with 5.5-, 6.5-, and 7.0-mm optical zones. J Refract Surg. 2005;21:52–8.PubMedGoogle Scholar
  38. 38.
    Choi SR, Kim US. The correlation between angle kappa and ocular biometry in Koreans. Korean J Ophthalmol. 2013;27(6):421–4.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Read SA, Collins MJ, Carney LG. A review of astigmatism and its possible genesis. Clin Exp Optom. 2007;90(1):5–19. Scholar
  40. 40.
    Schwartz SH. Image formation: point sources. In:Geometrical and visual optics: a clinical introduction. 2nd ed. New York: McGraw-Hill Education; 2013. p. 143.Google Scholar
  41. 41.
    Wilson SE, Klyce SD, Husseini ZM. Standardized color-coded maps for corneal topography. Ophthalmology. 1993;100:1723–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Smolek MK, Klyce SD, Hovis JK. The universal standard scale: proposed improvements to the American National Standard Institute (ANSI) scale for corneal topography. Ophthalmology. 2002;109:361–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Belin MW, Khachikian SS, Ambrosio R Jr. Suggested set-up and screening guidelines. In: Belin MW, Khachikian SS, Ambrosio Jr R, editors. Elevation based corneal tomography. 2nd ed. Panama City: Jaypee-Highlights Medical Publisher Inc; 2012. p. 57–69.CrossRefGoogle Scholar
  44. 44.
    Ziemer Ophthalmic Systems AG. ZIEMER® GALILEI™ software version 5.2 upgrade information package. Ziemer Ophthalmic Systems AG; 2010.Google Scholar
  45. 45.
    Sinjab MM. A 12-point algorithm to master corneal tomography. CRSTEurope; 2017.Google Scholar
  46. 46.
    Bogan SJ, Waring GO III, Ibrahim O, et al. Classification of normal corneal topography based on computer-assisted videokeratography. Arch Ophthalmol. 1990;108(7):945–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Dingeldein SA, Klyce SD. The topography of normal corneas. Arch Ophthalmol. 1989;107:512–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Rabinowitz YS, Yang H, Brickman Y, et al. Videokeratography database of normal human corneas. Br J Ophthalmol. 1996;80(7):610–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Litoff D, Belin MW, Winn SS, et al. PAR technology corneal topography system. Inv Ophthalmol Vis Sci. 1991;32:922.Google Scholar
  50. 50.
    Belin MW, Litoff D, Strods SJ, et al. The PAR technology corneal topography system. Refract Corneal Surg. 1992;8:88–96.PubMedGoogle Scholar
  51. 51.
    Khachikian SS, Belin MW, Ambrosio R Jr. Normative data for the Oculus Pentacam. In: Belin MW, Khachikian SS, Ambrosio Jr R, editors. Elevation based corneal tomography. 2nd ed. Panama City: Jaypee-Highlights Medical Publisher Inc; 2012. p. 71–9.CrossRefGoogle Scholar
  52. 52.
    Belin MW, Khachikian SS, Ambrosio R Jr. Understanding elevation based topography: how elevation data is displayed. In: Belin MW, Khachikian SS, Ambrosio Jr R, editors. Elevation based corneal tomography. 2nd ed. Panama City: Jaypee-Highlights Medical Publisher Inc; 2012. p. 25–45.CrossRefGoogle Scholar
  53. 53.
    Sinjab MM. Classifications and patterns of keratoconus and keratectasia. In:Quick guide to the management of keratoconus. Heidelberg: Springer; 2012. p. 13–57.CrossRefGoogle Scholar
  54. 54.
    Ambrosio R Jr, de Oliveira Ramos IC, Luz A, et al. Comprehensive Pachymetric evaluation. In: Belin MW, Khachikian SS, Ambrosio Jr R, editors. Elevation based corneal tomography. 2nd ed. Panama City: Jaypee-Highlights Medical Publisher Inc; 2012. p. 25–45.Google Scholar
  55. 55.
    Galletti JD, Ruiseñor Vázquez PR, Minguez N, et al. Corneal asymmetry analysis by Pentacam Scheimpflug tomography for keratoconus diagnosis. J Refract Surg. 2015;31(2):116–23.CrossRefPubMedGoogle Scholar
  56. 56.
    Sinjab MM. Displaced Apex syndrome. In:Corneal topography in clinical practice (Pentacam System): basics and clinical interpretationh. 2nd ed. New Delhi: Jaypee Brothers Medical Publishers; 2012. p. 159–64.CrossRefGoogle Scholar
  57. 57.
    Hick S, Laliberté JF, Meunier J, et al. Effects of misalignment during corneal topography. J Cataract Refract Surg. 2007;33(9):1522–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Saad A, Gilbert E, Gatinel D. Corneal enantiomorphism in normal and keratoconic eyes. J Refract Surg. 2014;30(8):542–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Gomes JAP, Tan D, Rapuano CJ, et al. Global consensus on keratoconus and ectatic disease. Cornea. 2015;34(4):359–69.CrossRefPubMedGoogle Scholar
  60. 60.
    Berti T, Ghanem V, Ghanem R, et al. Moderate keratoconus with thick corneas. J Refract Surg. 2013;29:430–5. Scholar
  61. 61.
    Sinjab MM, Youssef LN. Pellucid-like keratoconus.
  62. 62.
    Lee BW, Jurkunas UV, Harissi-Dagher M, et al. Ectatic disorders associated with a claw-shaped pattern on corneal topography. Am J Ophthalmol. 2007;144:154–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Baillif S, Garweg JG, Grange JD, et al. Keratoglobus: review of the literature. J Fr Ophthalmol. 2005;28:1145–9.CrossRefGoogle Scholar
  64. 64.
    Wallang BS, Das S. Keratoglobus. Eye. 2013;27(9):1004–12.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Belin MW, Kim JT, Zloty P, et al. Simplified nomenclature for describing keratoconus. Int J Keratoco Ectatic Corneal Dis. 2012;1(1):31–5.CrossRefGoogle Scholar
  66. 66.
    Klyce SD. Chasing the suspect: keratoconus. Br J Ophthalmol. 2009;93(7):845.CrossRefPubMedGoogle Scholar
  67. 67.
    Butler TH. Two rare corneal conditions: I. Acute conical cornea II. Keratoconus Posticus Circumscriptus. Br J Ophthalmol. 1932;16(1):30–5.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Williams R. Acquired posterior keratoconus. Br J Ophthalmol. 1987 Jan;71(1):16–7.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Skuta GL, Cantor LB, Weiss JS. Refractive surgery. In:American Academy of Ophthalmology Basic and Clinical Sciences Course. San Francisco: American Academy of Ophthalmology; 2011-2012. p. 45–6.Google Scholar
  70. 70.
    Randleman JB. Etiology and clinical presentations of irregular astigmatism after Keratorefractive surgery. In: Wang M, editor. Irregular astigmatism: diagnosis and treatment. Thorofare, NJ: Slack; 2008. p. 73–84.Google Scholar
  71. 71.
    Alio JL. Corneal irregularity. In: Alio J, Azar D, editors. Management of complications in refractive surgery. Berlin: Springer; 2008. p. 143–6.CrossRefGoogle Scholar
  72. 72.
    Murta J, Rosa AM. Measurement and topography guided treatment of irregular astigmatism. In: Goggin M, editor. Astigmatism—optics, physiology and management. Rijeka, Croatia: InTech; 2012. Scholar
  73. 73.
    Seitz B. Astigmatism after keratoplasty: prophylaxis and therapy. Ocular surgery news U.S. edition, September 15, 2000.Google Scholar
  74. 74.
    Stuphin JE. External diseases and cornea. In: American Academy of Ophthalmology Basic and Clinical Sciences Course. San Francisco: American Academy of Ophthalmology; 2006–2007. ISBN: 1-56055-612-9.Google Scholar
  75. 75.
    Swartz T, Duplessie M, Munir W, et al. Non ectatic corneal problems causing irregular astigmatism. In: Wang M, editor. Irregular astigmatism: diagnosis and treatment. Thorofare, NJ: Slack; 2008. p. 145–73.Google Scholar
  76. 76.
    Liu Z, Pflugfelder SC. The effects of long-term contact lens wear on corneal thickness, curvature and surface regularity. Ophthalmology. 2000;107:105–11.CrossRefPubMedGoogle Scholar
  77. 77.
    Holden BA, Sweeney DF, Vannas A, et al. Effect of long-term extended contact lens wear on the human cornea. Invest Ophthalmol Vis Sci. 1985;26:1489–−1501.PubMedGoogle Scholar
  78. 78.
    Wang X, McCulley JP, Bowman RW, et al. Time to resolution of contact lens-induced corneal warpage prior to refractive surgery. CLAO J. 2002;28(4):169–−71.PubMedGoogle Scholar
  79. 79.
    Hansen A, Norn M. Astigmatism and surface phenomena in pterygium. Acta Ophthalmol. 1980;58:174–81.CrossRefGoogle Scholar
  80. 80.
    Oldenburg JB, Garbus J, McDonnell JM, et al. Conjunctival pterygia: mechanism of corneal topographic changes. Cornea. 1990;9:200–4.CrossRefPubMedGoogle Scholar
  81. 81.
    Ozdemir M, Cinal A. Early and late effects of pterygium surgery on corneal topography. Ophthalmic Surg Lasers Imaging. 2005;36:451–6.PubMedGoogle Scholar
  82. 82.
    Walland MJ, Stevens JD, Steele AD. The effect of recurrent pterygium on corneal topography. Cornea. 1994;13:463–4.CrossRefPubMedGoogle Scholar
  83. 83.
    Gridley MJ, Perlman EM. A form of variable astigmatism induced by pseudo pterygium. Ophthalmic Surg. 1986;17:794–5.PubMedGoogle Scholar
  84. 84.
    Tomidokoro A, Oshika T, Amano S, et al. Quuantitative analysis of regular and irregular astigmatism induced by pterygium. Cornea. 1999;18:412–5.CrossRefPubMedGoogle Scholar
  85. 85.
    Oner FH, Kaderli B, Durak I, et al. Analysis of the pterygium size inducing marked refractive astigmatism. Eur J Ophthalmol. 2000;10:212–4.CrossRefPubMedGoogle Scholar
  86. 86.
    Sinjab MM. Diagnosis of keratoconus. In:Quick guide to the management of keratoconus. Heidelberg: Springer; 2012. p. 1–11.CrossRefGoogle Scholar
  87. 87.
    Harvey W, Gilmartin B. Paediatric optometry. Edinburg: Butterworth-Heinemann; 2004. p. 47.Google Scholar
  88. 88.
    Belin MW, Khachikian SS. Introduction and overview. In: Belin MW, Khachikian SS, Ambrosio Jr R, editors. Elevation based corneal tomography. 2nd ed. Panama City: Jaypee-Highlights Medical Publisher Inc; 2012. p. 2.CrossRefGoogle Scholar
  89. 89.
  90. 90.
    Holladay JT, Hill WE, Steinmueller A. Corneal power measurements using Scheimpflug imaging in eyes with prior corneal refractive surgery. J Refract Surg. 2009;25:863–8.CrossRefGoogle Scholar
  91. 91.
    Alpins N, Ong JKY, Stamatelatos G. Corneal topographic astigmatism (CorT) to quantify Total corneal astigmatism. J Refract Surg. 2015;31(3):182–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mazen M. Sinjab
    • 1
  1. 1.Damascus UniversityDamascusSyria

Personalised recommendations