Advertisement

Selenium Deficiency and Thyroid Disease

  • Margaret P. Rayman
  • Leonidas H. Duntas
Chapter

Abstract

The essential nutrient selenium (Se), which is incorporated as selenocysteine in an array of selenoproteins, is characterised by a wide range of actions that render this trace element indispensable for numerous biological functions and hence for health. Se is particularly important for both thyroid homeostasis and the stability of the hypothalamic-pituitary-thyroid axis, since all three deiodinase enzymes are selenoproteins. Se deficiency has been associated with a variety of thyroid diseases, including myxoedematous cretinism, goitre, thyroid autoimmune disease and cancer. Mutations in the selenocysteine- binding protein 2 (SBP2) gene interfere with the synthesis of selenoproteins thus causing a multisystem selenoprotein deficiency disorder. Given that Se requirements vary according to the iodine status of the region, indications for supplementation should be based on location as well as on measurements of Se status while also taking into account several other factors, among them sex and age.

Keywords

Selenium Selenoproteins Selenium status Goitre Autoimmune thyroid disease Hashimoto’s thyroiditis Graves’ disease Thyroid cancer 

References

  1. 1.
    Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256–68.CrossRefGoogle Scholar
  2. 2.
    Kohrle J, Jakob F, Contempre B, Dumont JE. Selenium, the thyroid, and the endocrine system. Endocr Rev. 2005;26(7):944–84.CrossRefGoogle Scholar
  3. 3.
    Kohrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes. 2013;20(5):441–8.CrossRefGoogle Scholar
  4. 4.
    Schmutzler C, Mentrup B, Schomburg L, Hoang-Vu C, Herzog V, Kohrle J. Selenoproteins of the thyroid gland: expression, localization and possible function of glutathione peroxidase 3. Biol Chem. 2007;388(10):1053–9.CrossRefGoogle Scholar
  5. 5.
    Darras VM, Van Herck SL. Iodothyronine deiodinase structure and function: from ascidians to humans. J Endocrinol. 2012;215(2):189–206.CrossRefGoogle Scholar
  6. 6.
    Schomburg L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol. 2011;8(3):160–71.CrossRefGoogle Scholar
  7. 7.
    Taylor PN, Peeters R, Dayan CM. Genetic abnormalities in thyroid hormone deiodinases. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):402–6.CrossRefGoogle Scholar
  8. 8.
    Porcu E, Medici M, Pistis G, Volpato CB, Wilson SG, Cappola AR, et al. A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS Genet. 2013;9(2):e1003266.CrossRefGoogle Scholar
  9. 9.
    Panicker V, Saravanan P, Vaidya B, Evans J, Hattersley AT, Frayling TM, et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J Clin Endocrinol Metab. 2009;94(5):1623–9.CrossRefGoogle Scholar
  10. 10.
    Schomburg L, Kohrle J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol Nutr Food Res. 2008;52(11):1235–46.CrossRefGoogle Scholar
  11. 11.
    Lin JC, Kuo WR, Chiang FY, Hsiao PJ, Lee KW, Wu CW, et al. Glutathione peroxidase 3 gene polymorphisms and risk of differentiated thyroid cancer. Surgery. 2009;145(5):508–13.CrossRefGoogle Scholar
  12. 12.
    Leoni SG, Sastre-Perona A, De la Vieja A, Santisteban P. Selenium increases TSH-induced sodium/iodide symporter expression through Txn/Ape1-dependent regulation of Pax8 binding activity. Antioxid Redox Signal. 2016;24(15):855–66.CrossRefGoogle Scholar
  13. 13.
    Leoni SG, Kimura ET, Santisteban P, De la Vieja A. Regulation of thyroid oxidative state by thioredoxin reductase has a crucial role in thyroid responses to iodide excess. Mol Endocrinol. 2011;25(11):1924–35.CrossRefGoogle Scholar
  14. 14.
    Santos LR, Duraes C, Mendes A, Prazeres H, Alvelos MI, Moreira CS, et al. A polymorphism in the promoter region of the selenoprotein S gene (SEPS1) contributes to Hashimoto’s thyroiditis susceptibility. J Clin Endocrinol Metab. 2014;99(4):E719–23.CrossRefGoogle Scholar
  15. 15.
    Tan J, Zhu W, Wang W, Li R, Hou S, Wang D, et al. Selenium in soil and endemic diseases in China. Sci Total Environ. 2002;284(1–3):227–35.CrossRefGoogle Scholar
  16. 16.
    Wu Q, Rayman MP, Lv H, Schomburg L, Cui B, Gao C, et al. Low population selenium status is associated with increased prevalence of thyroid disease. J Clin Endocrinol Metab. 2015;100(11):4037–717.CrossRefGoogle Scholar
  17. 17.
    American Thyroid Association, Iodine Deficiency. 2016. http://www.thyroid.org/iodine-deficiency/. Accessed 29 Mar 2016.
  18. 18.
    Teng X, Shan Z, Chen Y, Lai Y, Yu J, Shan L, et al. More than adequate iodine intake may increase subclinical hypothyroidism and autoimmune thyroiditis: a cross-sectional study based on two Chinese communities with different iodine intake levels. Eur J Endocrinol. 2011;164(6):943–50.CrossRefGoogle Scholar
  19. 19.
    Teng X, Shi X, Shan Z, Jin Y, Guan H, Li Y, et al. Safe range of iodine intake levels: a comparative study of thyroid diseases in three women population cohorts with slightly different iodine intake levels. Biol Trace Elem Res. 2008;121(1):23–30.CrossRefGoogle Scholar
  20. 20.
    Gaitan E. Goitrogens in food and water. Annu Rev Nutr. 1990;10:21–39.CrossRefGoogle Scholar
  21. 21.
    Dumitrescu AM, Refetoff S. Inherited defects of thyroid hormone metabolism. Ann Endocrinol (Paris). 2011;72(2):95–8.  https://doi.org/10.1016/j.ando.2011.03.011.CrossRefGoogle Scholar
  22. 22.
    Driscoll DM, Copeland PR. Mechanism and regulation of selenoprotein synthesis. Annu Rev Nutr. 2003;23:17–40.CrossRefGoogle Scholar
  23. 23.
    Lescure A, Allmang C, Yamada K, Carbon P, Krol A. cDNA cloning, expression pattern and RNA binding analysis of human selenocysteine insertion sequence (SECIS) binding protein 2. Gene. 2002;291(1–2):279–85.CrossRefGoogle Scholar
  24. 24.
    Dumitrescu AM, Liao XH, Abdullah MS, et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet. 2005;37(11):1247–52.CrossRefGoogle Scholar
  25. 25.
    Schoenmakers E, Agostini M, Mitchell C, et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest. 2010;120(12):4220–35.  https://doi.org/10.1172/JCI43653.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Di Cosmo C, McLellan N, Liao XH, et al. Clinical and molecular characterization of a novel selenocysteine insertion sequence-binding protein 2 (SBP2) gene mutation (R128X). J Clin Endocrinol Metab. 2009;94(10):4003–9.  https://doi.org/10.1210/jc.2009-0686.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Azevedo MF, Barra GB, Naves LA, et al. Selenoprotein-related disease in a young girl caused by nonsense mutations in the SBP2 gene. J Clin Endocrinol Metab. 2010;95(8):4066–71.  https://doi.org/10.1210/jc.2009-2611.CrossRefPubMedGoogle Scholar
  28. 28.
    Schomburg L, Dumitrescu AM, Liao XH, et al. Selenium supplementation fails to correct the selenoprotein synthesis defect in subjects with SBP2 gene mutations. Thyroid. 2009;19(3):277–81.  https://doi.org/10.1089/thy.2008.0397.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schoenmakers E, Carlson B, Agostini M, et al. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J Clin Invest. 2016;126(3):992–6.  https://doi.org/10.1172/JCI84747.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Knudsen N, Brix TH. Genetic and non-iodine-related factors in the aetiology of nodular goitre. Best Pract Res Clin Endocrinol Metab. 2014;28(4):495–506.  https://doi.org/10.1016/j.beem.2014.02.005.CrossRefPubMedGoogle Scholar
  31. 31.
    Rasmussen LB, Schomburg L, Köhrle J, et al. Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur J Endocrinol. 2011;164(4):585–90.CrossRefGoogle Scholar
  32. 32.
    Kishosha PA, Galukande M, Gakwaya AM. Selenium deficiency a factor in endemic goiter persistence in sub-Saharan Africa. World J Surg. 2011;35(7):1540–5.  https://doi.org/10.1007/s00268-011-1096-5.CrossRefPubMedGoogle Scholar
  33. 33.
    Keshteli AH, Hashemipour M, Siavash M, Amini M. Selenium deficiency as a possible contributor of goiter in schoolchildren of Isfahan, Iran. Biol Trace Elem Res. 2009;129(1–3):70–7.  https://doi.org/10.1007/s12011-008-8296-3.CrossRefPubMedGoogle Scholar
  34. 34.
    Brauer VF, Schweizer U, Köhrle J, Paschke R. Selenium and goiter prevalence in borderline iodine sufficiency. Eur J Endocrinol. 2006;155(6):807–12.CrossRefGoogle Scholar
  35. 35.
    Liu Y, Huang H, Zeng J, Sun C. Thyroid volume, goiter prevalence, and selenium levels in an iodine-sufficient area: a cross-sectional study. BMC Public Health. 2013;10(13):1153.  https://doi.org/10.1186/1471-2458-13-1153.CrossRefGoogle Scholar
  36. 36.
    Contempre B, Le Moine O, Dumont JE, et al. Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor beta (TGF-beta). Mol Cell Endocrinol. 1996;124(1–2):7–15.CrossRefGoogle Scholar
  37. 37.
    Contempre B, Dumont JE, Denef JF, Many MC. Effects of selenium deficiency on thyroid necrosis, fibrosis and proliferation: a possible role in myxoedematous cretinism. Eur J Endocrinol. 1995;133(1):99–109.CrossRefGoogle Scholar
  38. 38.
    Paschke R. Molecular pathogenesis of nodular goiter. Langenbeck’s Arch Surg. 2011;396(8):1127–36.  https://doi.org/10.1007/s00423-011-0788-5.CrossRefGoogle Scholar
  39. 39.
    Beckett GJ, Arthur JR. Selenium and endocrine systems. J Endocrinol. 2005;184(3):455–65.CrossRefGoogle Scholar
  40. 40.
    Duntas LH. The role of iodine and selenium in autoimmune thyroiditis. Horm Metab Res. 2015;47(10):721–6.  https://doi.org/10.1055/s-0035-1559631.CrossRefPubMedGoogle Scholar
  41. 41.
    Guastamacchia E, Giagulli VA, Licchelli B, Triggiani V. Selenium and iodine in autoimmune thyroiditis. Endocr Metab Immune Disord Drug Targets. 2015;15(4):288–92.CrossRefGoogle Scholar
  42. 42.
    Köhrle J, Gärtner R. Selenium and thyroid. Best Pract Res Clin Endocrinol Metab. 2009;23(6):815–27.  https://doi.org/10.1016/j.beem.2009.08.002.CrossRefPubMedGoogle Scholar
  43. 43.
    Duntas LH. The role of selenium in thyroid autoimmunity and cancer. Thyroid. 2006;16(5):455–60.CrossRefGoogle Scholar
  44. 44.
    Thomson CD, Campbell JM, Miller J, Skeaff SA. Minimal impact of excess iodate intake on thyroid hormones and selenium status in older New Zealanders. Eur J Endocrinol. 2011;165(5):745–52.  https://doi.org/10.1530/EJE-11-0575.CrossRefPubMedGoogle Scholar
  45. 45.
    Bülow Pedersen I, Knudsen N, Carlé A, et al. Selenium is low in newly diagnosed Graves’ disease: a population-based study. Clin Endocrinol. 2013;79(4):584–90.  https://doi.org/10.1111/cen.12185.CrossRefGoogle Scholar
  46. 46.
    Bednarek J, Wysocki H, Sowiński J. Oxidative stress peripheral parameters in Graves’ disease: the effect of methimazole treatment in patients with and without infiltrative ophthalmopathy. Clin Biochem. 2005;38(1):13–8.CrossRefGoogle Scholar
  47. 47.
    Marcocci C, Bartalena L. Role of oxidative stress and selenium in Graves’ hyperthyroidism and orbitopathy. J Endocrinol Investig. 2013;36(10 Suppl):15–20.Google Scholar
  48. 48.
    Dehina N, Hofmann PJ, Behrends T, et al. Lack of association between selenium status and disease severity and activity in patients with Graves’ Ophthalmopathy. Eur Thyroid J. 2016;5(1):57–64.  https://doi.org/10.1159/000442440.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Duntas LH. The evolving role of selenium in the treatment of Graves’ disease and ophthalmopathy. J Thyroid Res. 2012;2012:6.  https://doi.org/10.1155/2012/736161.CrossRefGoogle Scholar
  50. 50.
    Bacic-Vrca V, Skreb F, Cepelak I, et al. The effect of antioxidant supplementation on superoxide dismutase activity, Cu and Zn levels, and total antioxidant status in erythrocytes of patients with Graves’ disease. Clin Chem Lab Med. 2005;43(4):383–8.CrossRefGoogle Scholar
  51. 51.
    Wang L, Wang B, Chen SR, et al. Effect of selenium supplementation on recurrent hyperthyroidism caused by Graves’ disease: a prospective pilot study. Horm Metab Res. 2016;48(9):559–64.  https://doi.org/10.1055/s-0042-110491.CrossRefPubMedGoogle Scholar
  52. 52.
    Leo M, Bartalena L, Rotondo Dottore G, et al. Effects of selenium on short-term control of hyperthyroidism due to Graves’ disease treated with methimazole: results of a randomized clinical trial. J Endocrinol Invest. 2016.Google Scholar
  53. 53.
    Marcocci C, Kahaly GJ, Krassas GE, et al. European group on Graves’ Orbitopathy. Selenium and the course of mild Graves’ orbitopathy. N Engl J Med. 2011;364(20):1920–31.  https://doi.org/10.1056/NEJMoa1012985.CrossRefGoogle Scholar
  54. 54.
    Rotondo Dottore G, Leo M, Casini G, et al. Antioxidant actions of selenium in orbital fibroblasts: a basis for the effects of selenium in Graves’ orbitopathy. Thyroid. 2016.Google Scholar
  55. 55.
    Duntas LH. Environmental factors and thyroid autoimmunity. Ann Endocrinol (Paris). 2011;72(2):108–13.  https://doi.org/10.1016/j.ando.2011.03.019.CrossRefGoogle Scholar
  56. 56.
    Eschler DC, Hasham A, Tomer Y. Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allergy Immunol. 2011;41(2):190–7.  https://doi.org/10.1007/s12016-010-8245-8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Curran JE, Jowett JB, Elliott KS, et al. Genetic variation in selenoprotein S influences inflammatory response. Nat Genet. 2005;37:1234–41.CrossRefGoogle Scholar
  58. 58.
    Duntas LH, Benvenga S. Selenium: an element for life. Endocrine. 2015;48(3):756–65.  https://doi.org/10.1007/s12020-014-0477-6.CrossRefPubMedGoogle Scholar
  59. 59.
    Köhrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):392–401.  https://doi.org/10.1097/MED.0000000000000190.CrossRefPubMedGoogle Scholar
  60. 60.
    Toulis KA, Anastasilakis AD, Tzellos TG, et al. Selenium supplementation in the treatment of Hashimoto’s thyroiditis: a systematic review and a meta-analysis. Thyroid. 2010;20(10):1163–73.  https://doi.org/10.1089/thy.2009.0351.CrossRefPubMedGoogle Scholar
  61. 61.
    van Zuuren EJ, Albusta AY, Fedorowicz Z, et al. Selenium supplementation for Hashimoto’s thyroiditis: summary of a cochrane systematic review. Eur Thyroid J. 2014;3(1):25–31.  https://doi.org/10.1159/000356040.CrossRefPubMedGoogle Scholar
  62. 62.
    Wichman J, Winther KH, Bonnema SJ, Hegedüs L. Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: a systematic review and meta-analysis. Thyroid. 2016;26(12):1681–92.CrossRefGoogle Scholar
  63. 63.
    Mehran L, Amouzegar A, Delshad H, et al. Trimester-specific reference ranges for thyroid hormones in Iranian pregnant women. J Thyroid Res. 2013;2013:651517.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Stagnaro-Green A. Approach to the patient with postpartum thyroiditis. J Clin Endocrinol Metab. 2012;97:334–42.CrossRefGoogle Scholar
  65. 65.
    Negro R, Greco G, Mangieri T, Pezzarossa A, Dazzi D, Hassan H. The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J Clin Endocrinol Metab. 2007;92(4):1263–8.CrossRefGoogle Scholar
  66. 66.
    Petricca D, Nacamulli D, Mian C, et al. Effects of selenium supplementation on the natural course of autoimmune thyroiditis: a short review. J Endocrinol Investig. 2012;35(4):419–24.Google Scholar
  67. 67.
    Xue H, Wang W, Li Y, et al. Selenium upregulates CD4(+)CD25(+) regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2(h4) mice. Endocr J. 2010;57(7):595–601.CrossRefGoogle Scholar
  68. 68.
    Tan L, Sun W, Sang ZN, et al. The effect of selenium on the expression of Fas/FasL in experimental autoimmune thyroiditis rats’ thyroid with adequate iodine. Zhonghua Yu Fang Yi Xue Za Zhi. 2008;42(9):640–3.PubMedGoogle Scholar
  69. 69.
    Gärtner R, Gasnier BC, Dietrich JW, et al. Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab. 2002;87(4):1687–91.CrossRefGoogle Scholar
  70. 70.
    Negro R, Attanasio R, Grimaldi F, et al. Italian survey about the clinical use of selenium in thyroid disease. Eur Thyroid J. 2016;5(3):164–70.CrossRefGoogle Scholar
  71. 71.
    Clark LC, Combs GF Jr, Turnbull BW, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional prevention of Cancer Study Group. JAMA. 1996;276(24):1957–63.CrossRefGoogle Scholar
  72. 72.
    Shen F, Cai WS, Li JL, et al. The association between serum levels of selenium, copper, and magnesium with thyroid cancer: a meta-analysis. Biol Trace Elem Res. 2015;167(2):225–35.  https://doi.org/10.1007/s12011-015-0304-9.CrossRefPubMedGoogle Scholar
  73. 73.
    Kucharzewski M, Braziewicz J, Majewska U, Gozdz S. Copper, zinc, and selenium in whole blood and thyroid tissue of people with various thyroid diseases. Biol Trace Elem Res. 2003;93(1–3):9–18.CrossRefGoogle Scholar
  74. 74.
    Jonklaas J, Danielsen M, Wang H. A pilot study of serum selenium, vitamin D, and thyrotropin concentrations in patients with thyroid cancer. Thyroid. 2013;23(9):1079–86.  https://doi.org/10.1089/thy.2012.0548.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    O’Grady TJ, Kitahara CM, DiRienzo AG, Gates MA. The association between selenium and other micronutrients and thyroid cancer incidence in the NIH-AARP diet and health study. PLoS One. 2014;9(10):e110886.  https://doi.org/10.1371/journal.pone.0110886. eCollection 2014.CrossRefGoogle Scholar
  76. 76.
    Duncan A, Talwar D, McMillan DC, et al. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am J Clin Nutr. 2012;95(1):64–71.  https://doi.org/10.3945/ajcn.111.023812.CrossRefPubMedGoogle Scholar
  77. 77.
    Renko K, Hofmann PJ, Stoedter M, et al. Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice. FASEB J. 2009;23(6):1758–65.  https://doi.org/10.1096/fj.08-119370.CrossRefPubMedGoogle Scholar
  78. 78.
    Bera S, De Rosa V, Rachidi W, Diamond AM. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? Mutagenesis. 2013;28(2):127–34.  https://doi.org/10.1093/mutage/ges064.CrossRefPubMedGoogle Scholar
  79. 79.
    Ganther HE. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis. 1999;20(9):1657–66.CrossRefGoogle Scholar
  80. 80.
    Kato MA, Finley DJ, Lubitz CC, et al. Selenium decreases thyroid cancer cell growth by increasing expression of GADD153 and GADD34. Nutr Cancer. 2010;62(1):66–73.  https://doi.org/10.1080/01635580903191569.CrossRefPubMedGoogle Scholar
  81. 81.
    Rayman MP. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc. 2005;64(4):527–42.CrossRefGoogle Scholar
  82. 82.
    Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, et al. Selenium in human health and disease. Antioxid Redox Signal. 2011;14(7):1337–83.CrossRefGoogle Scholar
  83. 83.
    Rayman MP. Food-chain selenium and human health: emphasis on intake. Br J Nutr. 2008;100(2):254–68.PubMedGoogle Scholar
  84. 84.
    Cotton PA, Subar AF, Friday JE, Cook A. Dietary sources of nutrients among US adults, 1994 to 1996. J Am Diet Assoc. 2004;104(6):921–30.CrossRefGoogle Scholar
  85. 85.
    Food Standards Agency. Survey on measurement of the concentrations of metals and other elements from the 2006 UK total diet study. 2009. http://tna.europarchive.org/20140306205048/http://www.food.gov.uk/science/research/surveillance/fsisbranch2009/survey0109#.Vw0TvHNwbcs. Accessed 12 Apr 2016.
  86. 86.
    Stefanowicz FA, Talwar D, O’Reilly DS, Dickinson N, Atkinson J, Hursthouse AS, et al. Erythrocyte selenium concentration as a marker of selenium status. Clin Nutr. 2013;32(5):837–42.CrossRefGoogle Scholar
  87. 87.
    Thomson CD, Robinson MF, Butler JA, Whanger PD. Long-term supplementation with selenate and selenomethionine: selenium and glutathione peroxidase (EC 1.11.1.9) in blood components of New Zealand women. Br J Nutr. 1993;69(2):577–88.CrossRefGoogle Scholar
  88. 88.
    Rayman MP, Bode P, Redman CWG. Low selenium status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am J Obstet Gynecol. 2003;189(5):1343–9.CrossRefGoogle Scholar
  89. 89.
    Rayman MP, Thompson AJ, Bekaert B, Catterick J, Galassini R, Hall E, et al. Randomized controlled trial of the effect of selenium supplementation on thyroid function in the elderly in the United Kingdom. Am J Clin Nutr. 2008;87(2):370–8.CrossRefGoogle Scholar
  90. 90.
    Sengupta A, Carlson BA, Weaver JA, Novoselov SV, Fomenko DE, Gladyshev VN, et al. A functional link between housekeeping selenoproteins and phase II enzymes. Biochem J. 2008;413(1):151–61.CrossRefGoogle Scholar
  91. 91.
    Steinmaus CM. Perchlorate in water supplies: sources, exposures, and health effects. Curr Environ Health Rep. 2016.Google Scholar
  92. 92.
    Tajtakova M, Semanova Z, Tomkova Z, Szokeova E, Majoros J, Radikova Z, et al. Increased thyroid volume and frequency of thyroid disorders signs in schoolchildren from nitrate polluted area. Chemosphere. 2006;62(4):559–64.CrossRefGoogle Scholar
  93. 93.
    Gatseva PD, Argirova MD. High-nitrate levels in drinking water may be a risk factor for thyroid dysfunction in children and pregnant women living in rural Bulgarian areas. Int J Hyg Environ Health. 2008;211(5–6):555–9.CrossRefGoogle Scholar
  94. 94.
    Laurberg P, Jorgensen T, Perrild H, Ovesen L, Knudsen N, Pedersen IB, et al. The Danish investigation on iodine intake and thyroid disease, DanThyr: status and perspectives. Eur J Endocrinol. 2006;155(2):219–28.CrossRefGoogle Scholar
  95. 95.
    McCann JC, Ames BN. Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J. 2011;25(6):1793–814.CrossRefGoogle Scholar
  96. 96.
    Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2009;301(1):39–51.CrossRefGoogle Scholar
  97. 97.
    Duffield-Lillico AJ, Slate EH, Reid ME, Turnbull BW, Wilkins PA, Combs GF Jr, et al. Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J Natl Cancer Inst. 2003;95(19):1477–81.CrossRefGoogle Scholar
  98. 98.
    Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(4):217–23.CrossRefGoogle Scholar
  99. 99.
    Gladyshev VN, Arnér ES, Berry MJ, et al. Selenoprotein gene nomenclature. J Biol Chem. 2016;291(46):24036–40.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nutritional Sciences, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
  2. 2.Unit of Endocrinology Diabetes and MetabolismEvgenidion Hospital, National and Kapodistrian University of AthensAthensGreece

Personalised recommendations