Thyroglobulin and Tg Antibodies

  • Ulla Feldt-RasmussenEmail author
  • Luca Giovanella


Differentiated thyroid cancer is a rare malignancy but leaves numerous survivors for lifelong follow-up. The initial treatment consists of total thyroidectomy followed by ablation of thyroid remnants by radioiodine in most cases. Because thyroid cells are the only source of thyroglobulin (Tg), it serves as a biochemical marker of persistent or recurrent disease in the follow-up of DTC. Due to the suboptimal clinical detection rate of older Tg assays, endogenous or exogenous thyrotropin (TSH) stimulations are recommended for unmasking occult disease. However, the development of new Tg assays with improved analytical sensitivity and precision at low concentrations now allows detection of very low Tg concentrations, reflecting minimal amounts of thyroid tissue, even without the need for TSH stimulation. Thus, the cornerstone in current guidelines for long-term follow-up is by measuring the thyroid-specific tumour marker Tg in serum, and most patients can be followed up by this method. However, some thyroid cancer patients have antithyroglobulin antibodies (TgAb) in serum, both at diagnosis and after treatment, where follow-up is commenced. These antibodies interfere technically in the immunological methods for measuring Tg, and the TgAb-positive patients are thus eliminated from following current guidelines. In recent years complementary laboratory methods, such as Tg mini-recovery test and Tg measurement by tandem mass liquid spectrometry, were proposed, and studies have indicated that following the concentration of TgAb in serum may be a particularly important surrogate marker for recurrence of thyroid carcinoma in cases with TgAb where Tg measurement cannot be used. Adding the quantitative changes in TgAb to the follow-up strategy of these patients will improve the general management of differentiated thyroid carcinoma patients and open the road for individualized tailored follow-up.


Anti-thyroglobulin autoantibodies Thyroglobulin Antibody interference Differentiated thyroid cancer Follow-up 



UFR’s research salary was sponsored by Novo Nordic Research Foundation.


  1. 1.
    Clark OH, Duh Q-Y. Thyroid cancer. In: Greer MA, editor. The thyroid gland. New York: Raven Press; 1990. p. 537–72.Google Scholar
  2. 2.
    Hay ID, Hutchinson ME, Gonzalez-Losada T, McIver B, Reinalda ME, Grant CS, Thompson GB, Sebo TJ, Goellner JR. Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery. 2008;144:980–7.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Feldt-Rasmussen U. Serum thyroglobulin and thyroglobulin autoantibodies in thyroid diseases. Pathogenic and diagnostic aspects. Allergy. 1983;38:369–87.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Feldt-Rasmussen U, Verburg FA, Luster M, Cupini C, Chiovato L, Duntas L, Elisei R, Rimmele H, Seregni E, Smit JW, Theimer C, Giovanella L. Thyroglobulin autoantibodies as surrogate biomarkers in the management of patients with differentiated thyroid carcinoma. Curr Med Chem. 2014;21:3687–92.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W. European thyroid cancer taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154:787–803.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Feldt-Rasmussen U, Rasmussen AK. Serum thyroglobulin (Tg) in presence of thyroglobulin autoantibodies (TgAb). Clinical and methodological relevance of the interaction between Tg and TgAb in vitro and in vivo. J Endocrinol Investig. 1985;8:571–6.CrossRefGoogle Scholar
  8. 8.
    Spencer CA, Takeuchi M, Kazarosyan M, Wang CC, Guttler RB, Singer PA, Fatemi S, LoPresti JS, Nicoloff JT. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1998;83:1121–7.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Feldt-Rasmussen U, Rasmussen AK. Autoimmunity in differentiated thyroid cancer: significance and related clinical problems. Hormones (Athens). 2010;9:109–17.CrossRefGoogle Scholar
  10. 10.
    Verburg FA, Luster M, Cupini C, Chiovato L, Duntas L, Elisei R, Feldt-Rasmussen U, Rimmele H, Seregni E, Smit JW, Theimer C, Giovanella L. Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid. 2013;10:1211–125.CrossRefGoogle Scholar
  11. 11.
    Yamada O, Miyauchi A, Ito Y, Nakayama A, Yabuta T, Masuoka H, Fukushima M, Higashiyama T, Kihara M, Kobayashi K, Miya A. Changes in serum thyroglobulin antibody levels as a dynamic prognostic factor for early-phase recurrence of thyroglobulin antibody-positive papillary thyroid carcinoma after total thyroidectomy. Endocr J. 2014;61:961–5.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Donegan D, McIver B, Algeciras-Schimnich A. Clinical consequences of a change in anti-thyroglobulin antibody assays during the follow-up of patients with differentiated thyroid cancer. Endocr Pract. 2014;20:1032–6.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Spencer CA. Clinical review: clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96:3615–27.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Blomberg M, Feldt-Rasmussen U, Andersen KK, Kjaer SK. Thyroid cancer in Denmark 1943-2008, before and after iodine supplementation. Int J Cancer. 2012;131:2360–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. Nat Rev Endocrinol. 2016;12(11):646–53. Scholar
  16. 16.
  17. 17.
    Feldt-Rasmussen U. Iodine and cancer. Thyroid. 2001;11:483–6; ReviewPubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Silverberg S, Vidone R. Carcinoma of the thyroid in surgical and post-mortem material. Analysis of 300 cases at autopsy and literature review. Ann Surg. 1966;64:291–8.Google Scholar
  19. 19.
    Londero SC, Krogdahl A, Bastholt L, Overgaard J, Pedersen HB, Hahn CH, Bentzen J, Schytte S, Christiansen P, Gerke O, Godballe C, Danish Thyroid Cancer Group-DATHYRCA (part of the DAHANCA organization). Papillary thyroid carcinoma in Denmark, 1996-2008: outcome and evaluation of established prognostic scoring systems in a prospective national cohort. Thyroid. 2015;25:78–84.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Macedo FI, Mittal VK. Total thyroidectomy versus lobectomy as initial operation for small unilateral papillary thyroid carcinoma: a meta-analysis. Surg Oncol. 2015;24:117–22.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Matsuzu K, Sugino K, Masudo K, Nagahama M, Kitagawa W, Shibuya H, Ohkuwa K, Uruno T, Suzuki A, Magoshi S, Akaishi J, Masaki C, Kawano M, Suganuma N, Rino Y, Masuda M, Kameyama K, Takami H, Ito K. Thyroid lobectomy for papillary thyroid cancer: long-term follow-up study of 1,088 cases. World J Surg. 2014;38:68–79.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Grebe SKG. Diagnosis and management of thyroid carcinoma: focus on serum thyroglobulin. Expert Rev Endocrinol Metab. 2009;4:25–43.CrossRefGoogle Scholar
  23. 23.
    Giovanella L. Highly sensitive thyroglobulin measurements in differentiated thyroid carcinoma management. Clin Chem Lab Med. 2008;46:1067–73.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sadler WA, Smith MH. Use and abuse of imprecision profile. Some pitfall illustrated by comparing and plotting confidence intervals. Clin Chem. 1990;36:1346–50.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sheehan C, He J, Smith M. Method evaluation—a practical guide. In: Wild D, editor. The immunoassay handbook. 4th ed: Elsevier; 2013. p. 395–402.Google Scholar
  26. 26.
    Giovanella L, Clark P, Chiovato L, Duntas LH, Elisei R, Feldt-Rasmussen U, Leenhardt L, Luster M, Schalin-Jantti C, Schott M, Seregni E, Rimmele H, Smit JW, Verburg FA. Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol. 2014;171:R33–46.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Demers LM, Spencer CA, editor. National academy of clinical biochemistry guideline (archived). Laboratory support for the diagnosis and management of thyroid disease. Accessed 16 June 2014.
  28. 28.
    Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl (1)):S49–52.PubMedPubMedCentralGoogle Scholar
  29. 29.
    CLSI. Protocols for determination of limits of detection and limits of quantification: approved guidelines. Second ed. EP17-A. Wayne, PA: CLSI; 2012.Google Scholar
  30. 30.
    Ross HA, Netea-Maier RT, Schakenraad E, Bravenboer B, Hermus AR, Sweep FC. Assay bias may invalidate decision limits and affect comparability of serum thyroglobulin assay methods: an approach to reduce interpretation differences. Clin Chim Acta. 2008;394:104–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Clark PM. Laboratory services for thyroglobulin and implications for monitoring of differentiated thyroid cancer. J Clin Pathol. 2009;62:402–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Giovanella L, Clark PM, Chiovato L, Duntas L, Elisei R, Feldt-Rasmussen U, Leenhardt L, Luster M, Schalin-Jäntti C, Schott M, Seregni E, Rimmele H, Smit J, Verburg FA. Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol. 2014;171:33–46.CrossRefGoogle Scholar
  33. 33.
    Perros P, Boelaert K, Colley S et al. British Thyroid Association guidelines for the management of thyroid cancer. 3rd ed. Accessed 12 Aug 2016.
  34. 34.
    Spencer CA, Fatemi S. Thyroglobulin antibody (TgAb) methods—strengths, pitfalls and clinical utility for monitoring TgAb positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2013;27:701–12.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Feldt-Rasmussen U, Profilis C, Colinet E, Black E, Bornet H, Bourdoux P, Carayon P, Ericsson UB, Koutras DA, Lamas de Leon L, DeNayer P, Pacini F, Palumbo G, Santos A, Schlumberger M, Seidel C, Van Herle AJ, De Vijlder JJ. Human thyroglobulin reference material (CRM 457). 1st part: assessment of homogeneity, stability and immunoreactivity. Ann Biol Clin (Paris). 1996;54:337–42.Google Scholar
  36. 36.
    Feldt-Rasmussen U, Profilis C, Colinet E, Black E, Bornet H, Bourdoux P, Carayon P, Ericsson UB, Koutras DA, Lamas de Leon L, DeNayer P, Pacini F, Palumbo G, Santos A, Schlumberger M, Seidel C, Van Herle AJ, JJ DV. Human thyroglobulin reference material (CRM 457). 2nd part: physicochemical characterization and certification. Ann Biol Clin (Paris). 1996;54:343–8.Google Scholar
  37. 37.
    Feldt-Rasmussen U, Profilis C, Colinet E, Schlumberger M, Black E. Purification and assessment of stability and homogeneity of human thyroglobulin reference material (CRM457). Exp Clin Endocrinol. 1994;102:87–91.Google Scholar
  38. 38.
    Giovanella L, Feldt-Rasmussen U, Verburg FA, Grebe SK, Plebani M, Clark PM. Thyroglobulin measurement by highly sensitive assays: focus on laboratory challenges. Clin Chem Lab Med. 2015;53:1301–14.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Souza do Rosario PW, Ribeiro Borges MA, Fagundes TA, Franco AC, Purisch S. Is stimulation of thyroglobulin (Tg) useful in low-risk patients with thyroid carcinoma and undetectable Tg on thyroxin and negative neck ultrasound? Clin Endocrinol. 2005;62:121–5.CrossRefGoogle Scholar
  41. 41.
    Persoon AC, Jager PL, Sluiter WJ, Plukker JT, Wolffenbuttel BH, Links TP. A sensitive Tg assay or rhTSH stimulated Tg: what’s the best in the long-term follow-up of patients with differentiated thyroid carcinoma? PLoS One. 2007;2:e816.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Giovanella L, Ceriani L. High-sensitivity human thyroglobulin (hTG) immunoradiometric assay in the follow-up of patients with differentiated thyroid cancer. Clin Chem Lab Med. 2002;40:480–4.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Giovanella L, Ceriani L, Ghelfo A, Keller F, Sacchi A, Maffioli M, Spriano G. Thyroglobulin assay during thyroxine treatment in low-risk differentiated thyroid cancer management: comparison with recombinant human thyrotropin-stimulated assay and imaging procedures. Clin Chem Lab Med. 2006;44:648–52.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Spencer C, Fatemi S, Singer P, Nicoloff J, Lopresti J. Serum basal thyroglobulin measured by a second-generation assay correlates with the recombinant human thyrotropin-stimulated thyroglobulin response in patients treated for differentiated thyroid cancer. Thyroid. 2010;20:587–95.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Smallridge RC, Meek SE, Morgan MA, Gates GS, Fox TP, Grebe S, Fatourechi V. Monitoring thyroglobulin in a sensitive immunoassay has comparable sensitivity to recombinant human TSH-stimulated thyroglobulin in follow-up of thyroid cancer patients. J Clin Endocrinol Metab. 2007;92:82–7.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Iervasi A, Iervasi G, Bottoni A, Boni G, Annicchiarico C, Di Cecco P, Zucchelli GC. Diagnostic performance of a new highly sensitive thyroglobulin immunoassay. J Endocrinol. 2004;182:287–94.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Schlumberger M, Hitzel A, Toubert ME, Corone C, Troalen F, Schlageter MH, et al. Comparison of seven serum thyroglobulin assays in the follow-up of papillary and follicular thyroid cancer patients. J Clin Endocrinol Metab. 2007;92:2487–95.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rosario PW, Purisch S. Does a highly sensitive thyroglobulin (Tg) assay change the clinical management of low-risk patients with thyroid cancer with Tg on T4 < 1 ng/mL determined by traditional assays? Clin Endocrinol. 2008;68:338–42.CrossRefGoogle Scholar
  49. 49.
    Nakabashi CCD, Kasamatsu TS, Crispim F, Yamazaki CA, Camacho CP, Andreoni DM, Padovani RP, Ikejiri ES, Mamone MCOM, Aldighieri FC, Wagner J, Hidal JT, Vieira JGH, Biscolla RPM, Maciel RMB. Basal serum thyroglobulin measured by a second-generation assay is equivalent to stimulated thyroglobulin in identifying metastases in patients with differentiated thyroid cancer with low or intermediate risk of recurrence. Eur Thyroid J. 2014;3:43. Scholar
  50. 50.
    Chindris AM, Diehl NN, Crook JE, Fatourechi V, Smallridge RC. Undetectable sensitive serum thyroglobulin (<0.1 ng/ml) in 163 patients with follicular cell-derived thyroid cancer: results of rhTSH stimulation and neck ultrasonography and long-term biochemical and clinical follow-up. J Clin Endocrinol Metab. 2012;97:2714–23.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Malandrino P, Latina A, Marescalco S, Spadaro A, Regalbuto C, Fulco RA, Scollo C, Vigneri R, Pellegriti G. Risk-adapted management of differentiated thyroid cancer assessed by a sensitive measurement of basal serum thyroglobulin. J Clin Endocrinol Metab. 2011;96:1703–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Giovanella L, Treglia G, Sadeghi R, Trimboli P, Ceriani L, Verburg FA. Unstimulated high-sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: a meta-analysis. J Clin Endocrinol Metab. 2014;99:440–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Castagna MG, Tala Jury HP, Cipri C, Belardini V, Fioravanti C, Pasqui L, Sestini F, Theodoropoulou A, Pacini F. The use of ultrasensitive thyroglobulin assays reduces but does not abolish the need for TSH stimulation in patients with differentiated thyroid carcinoma. J Endocrinol Investig. 2011;34:219–23.Google Scholar
  54. 54.
    Brassard M, Borget I, Edet-Sanson A, Giraudet AL, Mundler O, Toubeau M, Bonichon F, Borson-Chazot F, Leenhardt L, Schwartz C, Dejax C, Brenot-Rossi I, Toubert ME, Torlontano M, Benhamou E, Schlumberger M. Long-term follow-up of patients with papillary and follicular thyroid cancer: a prospective study on 715 patients. J Clin Endocrinol Metab. 2011;96:1352–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Spencer C, LoPresti J, Fatemi S. How sensitive (second-generation) thyroglobulin measurement is changing paradigms for monitoring patients with differentiated thyroid cancer, in the absence or presence of thyroglobulin autoantibodies. Curr Opin Endocrinol Diabetes Obes. 2014;21:394–404.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Miyauchi A, Kudo T, Miya A, Kobayashi K, Ito Y, Takamura Y, et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 2011;21:707–16.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Wong H, Wong KP, Yau T, Tang V, Leung R, Chiu J, et al. Is there a role for unstimulated thyroglobulin velocity in predicting recurrence in papillary thyroid carcinoma patients with detectable thyroglobulin after radioiodine ablation? Ann Surg Oncol. 2012;19:3479–85.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Giovanella L, Trimboli P, Verburg FA, Treglia G, Piccardo A, Foppiani L, Ceriani L. Thyroglobulin levels and thyroglobulin doubling time independently predict a positive 18F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:874–80.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Baloch Z, Carayon P, Conte-Devolx B, Demers LM, Feldt-Rasmussen U, Henry JF, LiVosli VA, Niccoli-Sire P, John R, Ruf J, Smyth PP, Spencer CA, Stockigt JR. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid. 2003;13:3–126.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Tuttle RM, Tala H, Shah L, Leboeuf R, Ghossein R, Gonen M, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010;20:1341–9.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Vaisman F, Tala H, Grewal R, Tuttle RM. In differentiated thyroid cancer, an incomplete structural response to therapy is associated with significantly worse clinical outcomes than only an incomplete thyroglobulin response. Thyroid. 2011;21:1317–22.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Momesso DP, Vaisman F, Yang SP, Bulzico DA, Corbo R, Vaisman M, Tuttle RM. Dynamic risk stratification in patients with differentiated thyroid cancer treated without radioactive iodine. J Clin Endocrinol Metab. 2016;101:2692–700.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Durante C, Montesano T, Attard M, Torlontano M, Monzani F, Costante G, et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab. 2012;97:2748–53.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Nascimento C, Borget I, Troalen F, Al Ghuzlan A, Deandreis D, Hartl D, et al. Ultrasensitive serum thyroglobulin measurement is useful for the follow-up of patients treated with total thyroidectomy without radioactive iodine ablation. Eur J Endocrinol. 2013;169:689–93.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Feldt-Rasmussen U, Petersen PH, Nielsen H, Date J, Madsen CM. Thyroglobulin of varying molecular sizes with different disappearance rates in plasma following subtotal thyroidectomy. Clin Endocrinol. 1978;9:205–14.CrossRefGoogle Scholar
  66. 66.
    Schaadt B, Feldt-Rasmussen U, Rasmusson B, Torring H, Foder B, Jorgensen K, Hansen HS. Assessment of the influence of thyroglobulin (Tg) autoantibodies and other interfering factors on the use of serum Tg as tumor marker in differentiated thyroid carcinoma. Thyroid. 1995;5:165–70.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Bülow Pedersen I, Knudsen N, Carlé A, Vejbjerg P, Jørgensen T, Perrild H, Ovesen L, Banke Rasmussen L, Laurberg P. A cautious iodization program bringing iodine intake to a low recommended level is associated with an increase in the prevalence of thyroid autoantibodies in the population. Clin Endocrinol. 2011;75:120–6.CrossRefGoogle Scholar
  68. 68.
    Okosieme OE, Evans C, Moss L, Parkes AB, Premawardhana LD, Lazarus JH. Thyroglobulin antibodies in serum of patients with differentiated thyroid cancer: relationship between epitope specificities and thyroglobulin recovery. Clin Chem. 2005;51:729–34.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ruf J, Carayon P, Lissitzky S. Various expression of a unique anti-human thyroglobulin antibody repertoire in normal state and autoimmune disease. Eur J Immunol. 1985;15:268–72.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Chiovato L, Latrofa F, Braverman LE, Pacini F, Capezzone M, Masserini L, Grasso L, Pinchera A. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 2003;139:346–51.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Feldt-Rasmussen U, Schlumberger M. European interlaboratory comparison of serum thyroglobulin measurement. J Endocrinol Investig. 1988;11:175–81.CrossRefGoogle Scholar
  72. 72.
    Massart C, Corcuff JB, Bordenave L. False-positive results corrected by the use of heterophilic antibody-blocking reagent in thyroglobulin immunoassays. Clin Chim Acta. 2008;388:211–3.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Giovanella L, Keller F, Ceriani L, Tozzoli R. Heterophile antibodies may falsely increase or decrease thyroglobulin measurement in patients with differentiated thyroid carcinoma. Clin Chem Lab Med. 2009;47:952–4.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Preissner CM, O'Kane DJ, Singh RJ, Morris JC, Grebe SK. Phantoms in the assay tube: heterophile antibody interferences in serum thyroglobulin assays. J Clin Endocrinol Metab. 2003;88:3069–74.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Verburg FA, Waschle K, Reiners C, Giovanella L, Lentjes EG. Heterophile antibodies rarely influence the measurement of thyroglobulin and thyroglobulin antibodies in differentiated thyroid cancer patients. Horm Metab Res. 2010;42:736–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Gianoukakis AG. Thyroglobulin antibody status and differentiated thyroid cancer: what does it mean for prognosis and surveillance. Curr Opin Oncol. 2015;27:26–32.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Verburg FA, Hartmann D, Grelle I, Giovanella L, Buck AK, Reiners C. Relationship between antithyroglobulin autoantibodies and thyroglobulin recovery rates using different thyroglobulin concentrations in the recovery buffer. Horm Metab Res. 2013;45:728–35.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Giovanella L, Imperiali M, Verburg FA, Ceriani L. Evaluation of the BRAHMS Kryptor(®) thyroglobulin minirecovery test in patients with differentiated thyroid carcinoma. Clin Chem Lab Med. 2013;51:449–53.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Crane MS, Strachan MW, Toft AD, Beckett GJ. Discordance in thyroglobulin measurements by radioimmunoassay and immunometric assay: a useful means of identifying thyroglobulin assay interference. Ann Clin Biochem. 2013;50:421–32.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ringel MD, Nabhan F. Approach to follow-up of the patient with differentiated thyroid cancer and positive anti-thyroglobulin antibodies. J Clin Endocrinol Metab. 2012;98:3104–10.CrossRefGoogle Scholar
  81. 81.
    Clark P, Franklyn J. Can we interpret serum thyroglobulin results? Ann Clin Biochem. 2012;49:313–22.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Latrofa F, Ricci D, Montanelli L, Rocchi R, Piaggi P, Sisti E, Grasso L, Basolo F, Ugolini C, Pinchera A, Vitti P. Thyroglobulin autoantibodies in patients with papillary thyroid carcinoma: comparison of different assays and evaluation of causes of discrepancies. J Clin Endocrinol Metab. 2012;97:3974–82.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Spencer C, Petrovic I, Fatemi S. Current thyroglobulin autoantibody (TgAb) assays often fail to detect interfering TgAb that can result in the reporting of falsely low/undetectable serum Tg IMA values for patients with differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96:1283–91.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Clarke NJ, Zhang Y, Reitz RE. A novel mass spectrometry-based assay for the accurate measurement of thyroglobulin from patient samples containing antithyroglobulin autoantibodies. J Investig Med. 2012;60:1157–63.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kushnir MM, Rockwood AL, Roberts WL, Abraham D, Hoofnagle AN, Meikle AW. Measurement of thyroglobulin by liquid chromatography-tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies. Clin Chem. 2013;59:982–90.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Pacini F, Mariotti S, Formica N, Elisei R, Anelli S, Capotorti E, Pinchera A. Thyroid autoantibodies in thyroid cancer: incidence and relationship with tumour outcome. Acta Endocrinol. 1988;119:373–80.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rubello D, Casara D, Girelli ME, Piccolo M, Busnardo B. Clinical meaning of circulating antithyroglobulin antibodies in differentiated thyroid cancer: a prospective study. J Nucl Med. 1992;33:1478–80.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Tumino S, Belfiore A. Appearance of antithyroglobulin antibodies as the sole sign of metastatic lymph nodes in a patient operated on for papillary thyroid cancer. Thyroid. 2000;10:431–3.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Tsushima Y, Miyauchi A, Ito Y, Kudo T, Masouka H, Yabuta T, Fukushima M, Kibara M, Higashiyama T, Takamura Y, Kobayashi K, Miya A, Kikumori T, Imai T, Kiuchi T. Prognostic significance of changes in serum thyroglobulin antibody levels of pre- and post-total thyroidectomy in thyroglobulin antibody-positive papillary thyroid carcinoma. Endocr J. 2013;60:871–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Hsieh C-J, Wang P-W. Sequential changes of serum antithyroglobulin antibody levels are a good predictor of disease activity in thyroglobulin-negative patients with papillary thyroid carcinoma. Thyroid. 2014;24:488–93.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Kim WG, Yoon JH, Kim WB, Kim TY, Kim EY, Kim JM, Ryu JS, Gong G, Hong SJ, Shong YK. Change of serum antithyroglobulin antibody levels is useful for prediction of clinical recurrence in thyroglobulin-negative patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2008;93:4683–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Feldt-Rasmussen U, Hoeier-Madsen M, Hansen HS, Blichert-Toft M. Comparison between homogenous phase radioassay and enzyme-linked immunosorbant assay for measurement of antithyroglobulin antibody content in serum. Relation to presence of thyroglobulin. Acta Pathol Microbiol Immunol Scand C. 1986;94:33–8.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Feldt-Rasmussen U, Petersen PH, Date J, Madsen CM. Sequential changes in serum thyroglobulin (Tg) and its autoantibodies (TgAb) following subtotal thyroidectomy of patients with preoperatively detectable TgAb. Clin Endocrinol. 1980;12:29–38.CrossRefGoogle Scholar
  94. 94.
    Feldt-Rasmussen U, Bech K, Date J, Hyltoft PP, Johansen K, Madsen SM. Thyroid stimulating antibodies, thyroglobulin antibodies and serum proteins during treatment of Graves’ disease with radioiodine or propylthiouracil. Allergy. 1982;37:161–7.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Moser E, Braun S, Kirsch CM, Kleinhans E, Buell U. Time course of thyroglobulin autoantibodies in patients with differentiated thyroid carcinoma after radioiodine therapy. Nucl Med Commun. 1984;5:317–21.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hoofnagle AN, Becker JO, Wener MH, Heinecke JW. Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin Chem. 2008;54:1796–804.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Nam HY, Paeng JC, Chung JK, Kang KW, Cheon GJ, Kim Y, Park DJ, Park YJ, Min HS, Lee DS. Monitoring differentiated thyroid cancer patients with negative serum thyroglobulin. Diagnostic implication of TSH-stimulated antithyroglobulin antibody. Nuklearmedizin. 2014;53:32–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical Endocrinology and MetabolismRigshospitalet, University of CopenhagenCopenhagenDenmark
  2. 2.Department of Nuclear Medicine and Thyroid CentreOncology Institute of Southern SwitzerlandBellinzonaSwitzerland
  3. 3.Department of Laboratory Medicine EOLABEnte Ospedaliero CantonaleBellinzonaSwitzerland

Personalised recommendations