Advertisement

Dosimetry for Iodine-131 Therapy for Metastatic Differentiated Thyroid Cancer

  • Douglas Van Nostrand
Chapter

Abstract

Dosimetry is one of the two methods of selecting prescribed activity of I-131 for the treatment of metastatic differentiated thyroid cancer. The objective of this chapter is to present an overview of dosimetrically determined prescribed activity of I-131 for the treatment of metastatic differentiated thyroid cancer (DTC) with a discussion of (1) definitions, (2) the fundamentals of radiation therapy, (3) empiric vs. dosimetrically determined prescribed activity of I-131, (4) the fundamentals of I-131 dosimetry, (5) overview of whole body and lesional dosimetry, (6) simplified dosimetry, (7) review of the literature, and (8) recommendations for determination of prescribed activity of I-131 for differentiated thyroid cancer. This chapter will not discuss dosimetry for selection of prescribed activity of I-131 for Graves’ disease, autonomous nodule, or nontoxic multinodular goiter.

Keywords

Differentiated thyroid cancer Thyroid cancer I-131 I-131 treatment Dosimetry Metastatic thyroid cancer 

Notes

Acknowledgments

I would like to acknowledge the late Dr. Robert Leeper and Dr. Frank Atkins. Dr. Leeper personally helped Dr. Atkins and I establish whole body radioiodine dosimetry at Walter Reed Army Medical Center in 1980, and all of my work within radioiodine dosimetry could not have been possible without the extensive and outstanding collaboration of Dr. Atkins for the better part of 35 years, who was my physicist, colleague, and friend.

References

  1. 1.
    Wikipedia. https://en.wikipedia.org/wiki/Becquerel, Accessed 5–7 May 2016.
  2. 2.
    Vetter R, Glen J. Radiation and radioactivity. In: Wartofsky L, Van Nostrand D, editors. Thyroid cancer: a comprehensive guide to clinical management. 3rd ed. New York: Springer; 2016, pages will be out shortly.Google Scholar
  3. 3.
    Beierwaltes WH. The treatment of thyroid carcinoma with radioactive iodine. Semin Nucl Med. 1978;8:79–94.CrossRefGoogle Scholar
  4. 4.
    Schlumberger M, Tubiana M, DeVathaire F, et al. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1986;63:960–7.CrossRefGoogle Scholar
  5. 5.
    Petrich T, Widjaja A, Musholt TJ, et al. Outcome after radioiodine therapy in 107 patients with bone metastases of differentiated thyroid carcinomas. J Cin Endocrinol Metab. 2001;86:1568–473.CrossRefGoogle Scholar
  6. 6.
    Brown AP, Geening WP, McCready VR, et al. Radioiodine treatment of metastatic thyroid carcinoma: the Royal Marsden hospital experience. Br J Radiol. 1984;57:323–7.CrossRefGoogle Scholar
  7. 7.
    Menzel C, Grunwald A, Palmedo H, et al. “High-dose” 131I therapy in advanced differentiated thyroid carcinoma. J Nucl Med. 1996;37:1496–503.PubMedGoogle Scholar
  8. 8.
    Hindié E, Melliere D, Lange F, et al. Functioning pulmonary metastases of thyroid cancer: does radioiodine influence the prognosis? Eur J Nucl Med. 2003;30:974–81.CrossRefGoogle Scholar
  9. 9.
    International Commission on Radiological Protection. Radionuclide transformations. Energy and intensity of emissions. ICRP Publication 38. Ann ICRP 1983, vol 11–13.Google Scholar
  10. 10.
    Van Nostrand D, Atkins F, Yeganeh F, Acio E, Bursaw R, Wartofsky L. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 2002;12:121–34.CrossRefGoogle Scholar
  11. 11.
    Atkins A, Van Nostrand D, Wartofsky L. Dosimetrically-determined prescribed activity of radioiodine for the treatment of metastatic thyroid carcinoma. In: Wartofsky L, Van Nostrand D, editors. Thyroid cancer: a comprehensive guide to clinical management. 3rd ed. New York: Springer; 2016, pages will be out shortly.Google Scholar
  12. 12.
    Marinelli LD, Quimby EH, Hine GJ. Prescribed activity determination with radioactive isotopes. II. Practical considerations in therapy and protection. Am J Roentgenol. 1948;59:260–81.Google Scholar
  13. 13.
    Health Physicians Society. http://hps.org/publicinformation/radterms/radfact48.html. Accessed 7 May 2016.
  14. 14.
    Van Nostrand D, Bandaru V, Chennupati V, Kulkarni K, Wexler J, Atkins F, Mete M, Gadwale G. Radiopharmacokinetics of radioiodine in the parotid glands after the administration of lemon juice. Thyroid. 2010;20:1113–9.CrossRefGoogle Scholar
  15. 15.
    La Perle K, Kim DC, Hall NC, et al. Modulation of sodium/iodine symporter expression in the salivary gland. Thyroid. 2013;23(8):1029–37.CrossRefGoogle Scholar
  16. 16.
    Rall JE, Alpers JB, Lewallen CG, Sonenberg M, Berman M, Rawson RW. Radiation pneumonitis and fibrosis: a complication of radioiodine treatment of pulmonary metastases from cancer of the thyroid. J Cin Endocrinol Metab. 1957;17:1263–76.CrossRefGoogle Scholar
  17. 17.
    Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of 131I dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Therapy Nucl Med. 1962;87:171–82.Google Scholar
  18. 18.
    Leeper RD, Shimaoka K. Treatment of metastatic thyroid cancer. Clin Endocrinol Metab. 1980;9:383–404.CrossRefGoogle Scholar
  19. 19.
    Leeper RD. Thyroid cancer. Med Clin North Am. 1985;69:1079–96.CrossRefGoogle Scholar
  20. 20.
    Van Nostrand D, Freitas JE, Sawka AM, Tsang RW. Side effects of 131I for therapy of differentiated thyroid carcinoma. In: Wartofsky L, Van Nostrand D, editors. Thyroid cancer: a comprehensive guide to clinical management. 3rd ed. New York: Springer; 2016, pages will be out shortly.Google Scholar
  21. 21.
    Thomas SR, Maxon HR, Fritz KM, et al. A comparison of methods for assessing patient body burden following I-131 therapy for thyroid cancer. Radiology. 1980;137:839–42.CrossRefGoogle Scholar
  22. 22.
    Thomas SR, Maxon HR, Kereiakes JG, Saenger E. Quantitative external counting techniques enabling improved diagnostic and therapeutic decisions in patients with differentiated thyroid cancer. Radiology. 1977;122:731–7.CrossRefGoogle Scholar
  23. 23.
    Sisson J, Shulkin B, Lawson S. Increasing efficacy and safety of treatments of patients with well-differentiated thyroid carcinoma by measuring body retentions of 131I. J Nucl Med. 2003;44:898–903.PubMedGoogle Scholar
  24. 24.
    Van Nostrand D, Atkins F, Moreau S, Aiken M, Kulkarni K, Wu JS, Burman K, Wartofsky L. Utility of the radioiodine whole body retention at 48 hours for modifying empiric activity of 131-iodine for the treatment of metastatic well-differentiated thyroid carcinoma. Thyroid. 2009;19:1093–8.CrossRefGoogle Scholar
  25. 25.
    Hänscheid H, Lassmann M, Luster M, et al. Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma. Endocr Relat Cancer. 2009;16:1283–9.CrossRefGoogle Scholar
  26. 26.
    Atkins F, Van Nostrand D, Moreau S, Burman K, Wartofsky L. Validation of a simple thyroid cancer dosimetry model based on the fractional whole-body retention at 48 hours post-administration of 131I. Thyroid. 2015;25:1347–50.CrossRefGoogle Scholar
  27. 27.
    Jentzen W, Bockisch A, Ruhlmann M. Assessment of simplified blood dose protocols for the estimation of the maximum tolerable activity in thyroid cancer patients undergoing radioiodine therapy using 124I. J Nucl Med. 2015;56:832–83.CrossRefGoogle Scholar
  28. 28.
    Atkins F, Van Nostrand D. Simplified methods of dosimetry. In: Wartofsky L, Van Nostrand D, editors. Thyroid cancer: a comprehensive guide to clinical management. 3rd ed. New York: Springer; 2016. pages will be out shortly.Google Scholar
  29. 29.
    Van Nostrand D. Treatment of distant metastases. In: Wartofsky L, Van Nostrand D, editors. Thyroid cancer: a comprehensive guide to clinical management. 3rd ed. New York: Springer; 2016. pages will be out shortly.Google Scholar
  30. 30.
    Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F, Burman K, Jonklaas J, Mete M, Wartofsky L. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. Thyroid. 2011;96:3217–25.Google Scholar
  31. 31.
    Eisenhauera EA, Therasseb P, Bogaertsc J, Schwartzd LH, Sargente D, Fordf R, Danceyg J, Arbuckh S, Gwytheri S, Mooneyg M, Rubinsteing L, Shankarg L, Doddg L, Kaplanj R, Lacombec D, Verweijk J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Euro J Cancer. 2009;45:228–47.CrossRefGoogle Scholar
  32. 32.
    Maxon HR, Thomas SR, Hertzbert VS, et al. Relation between effective radiation dose and outcome of 131I therapy for thyroid cancer. N Engl J Med. 1983;309:937–41.CrossRefGoogle Scholar
  33. 33.
    Maxon HR, Englaro EE, Thomas SR, et al. 131I therapy for well differentiated thyroid cancer—a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med. 1992;33:1132–6.PubMedGoogle Scholar
  34. 34.
    Sgouros G, Kolbert KS, Sheikh A, et al. Patient-specific dosimetry for I-131 thyroid cancer therapy using I-124 PET and 3-dimensional internal dosimetry (3D-ID) software. J Nucl Med. 2004;45:1366–72.PubMedGoogle Scholar
  35. 35.
    Freudenberg LS, Jentzen W, Görges R, Petrich T, Marlowe RJ, Knust J, Bockisch A. 124I-Pet dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nucklearmedizin. 2007;4:121–8.Google Scholar
  36. 36.
    Khorjekar G, Senthamizhchelvan S, Van Nostrand D, et al. Correlation of 124I PET dosimetry with clinical response of 131I therapy for metastatic differentiated thyroid cancer. J Nucl Med. 2013;54(Suppl):52.Google Scholar
  37. 37.
    Jentzen W, Hoppenbrouwers J, van Leeuwn P, et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med. 2014;55:1759–65.CrossRefGoogle Scholar
  38. 38.
    Tuttle RM, Leboeuf R, Robbins RJ, Qualey R, Pentlow K, Larson SM, Chan CY. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med. 2006;47:1587–91.PubMedGoogle Scholar
  39. 39.
    Kulkarni K, Van Nostrand D, Atkins FB, Aiken MJ, Burman K, Wartofsky L. The frequency with which empiric amounts of radioiodine “over-” or “under-” treat patients with metastatic well-differentiated thyroid cancer. Thyroid. 2006;47:1019–23.CrossRefGoogle Scholar
  40. 40.
    Esposito G, Van Nostrand D, Atkins F, Burman K, Wartofsky L, Kulkarni K. Frequency of “over” And “under” treatment with empiric prescribed activity of i-131 in patients with and without lung metastasis secondary to well-differentiated thyroid cancer. J Nucl Med. 2006;47(1):238P.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Douglas Van Nostrand
    • 1
  1. 1.Nuclear Medicine Research, Division of Nuclear MedicineMedStar Health Research Institute, Washington Hospital Center, MedStar Washington Hospital Center, Georgetown University School of MedicineWashington, DCUSA

Personalised recommendations