Advertisement

The Role of Elastography in the Management of Thyroid Nodules

  • Hervé Monpeyssen
  • Jean Tramalloni
Chapter

Abstract

A high frequency of thyroid nodules, a low frequency of thyroid cancers, and their very good prognosis have encouraged and enabled us to develop a very accurate selection of the nodules to be treated in a specific manner.

Ultrasound (US) examination/aspiration cytology pairing is capable of assessing the precise nature of a nodule in approximately 80% of cases provided that the clinicians are experienced and work with TIRADS and Bethesda systems.

Since 2005, elastography has been used for the evaluation of thyroid nodules due to the fact the stiffness of a lesion may indicate its malignancy. Quasi-static elastography (QSE) (or Strain E.) and shear wave elastography (SWE) are incorporated in most of the ultrasound devices, elastographic scores thus now numbering among the other signs of nodular characterization.

However, after a period of enthusiasm, came a time of doubt which has now brought us to a time of reasoning.

Thus currently, QSE and SWE are feasible and useful, painless, and not too time-consuming techniques. Both provide us with precise data and good reproducibility, promising to significantly improve positive and negative predicting values. SWE indicates values in kPa and is feasible when QSE is inoperable. Elastography should never be a substitute for the other US data, while its efficacy is negatively correlated with the US expertise of the operator. Since it may detect tissue stiffness, it is useful for the detection of stiff cancers (papillary), though its efficacy for evaluating soft cancers (follicular) is not yet clear. Combining it with other diagnostic techniques (contrast-enhanced US, molecular biology, miRNA, etc.) is likely to resolve the problem.

Keywords

Thyroid nodules Thyroid cancer quasi-static elastography Strain elastography Shear wave elastography Nodule stiffness Young’s modulus Shear modulus Acoustic radiation force impulse (ARFI) TIRADS Thyroiditis Virtual touch Quantification 

Notes

Glossary

AIT

Autoimmune thyroiditis

ARFI

Acoustic radiation force impulse

AUS

Atypia of undetermined significance

CEUS

Contrast-enhanced ultrasound

ETA

European Thyroid Association

EFSUMB

European Federation of Societies for Ultrasound in Medicine and Biology

FNA

Fine needle aspiration cytology

IgG4

Immunoglobulin G4

kPa

Kilopascal

miRNA

Micro-RNA

NPV

Negative predicting value

PPV

Positive predicting value

QSE

Quasi-static elastography

RD

Research and development

ROI

Region of interest

SE

Strain elastography

SWE

Shear wave elastography

TE

Transient elastography

TIRADS

Thyroid imaging reporting and data system

TM

Time motion

VTq

Virtual touch quantification

2D

Two dimensional = B-mode = Gray scale

US

Ultrasound

References

  1. 1.
    Mai KT, Perkins DG, Yazdi HM, Commons AS, Thomas J, Meban S. Infiltrating papillary thyroid carcinoma: review of 134 cases of papillary carcinoma. Arch Pathol Lab Med. 1998;122(2):166–71.Google Scholar
  2. 2.
    Eisencher A. Echosysmographie. 1980.Google Scholar
  3. 3.
    Dickinson RJ, Hill CR. Measurement of soft tissue motion using correlation between A-scans. Ultrasound Med Biol. 1982;8(3):263–71.Google Scholar
  4. 4.
    Krouskop TA, Dougherty DR, Vinson FS. A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue. J Rehabil Res Dev. 1987;24(2):1–8.Google Scholar
  5. 5.
    Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.Google Scholar
  6. 6.
    Cespedes I, Ophir J, Ponnekanti H, Maklad N. Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason Imaging. 1993;15(2):73–88.Google Scholar
  7. 7.
    Bamber J, Cosgrove D, Dietrich CF, Fromageau J, Bojunga J, Calliada F, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med. 2013;34(2):169–84.PubMedGoogle Scholar
  8. 8.
    Bae U, Dighe M, Dubinsky T, Minoshima S, Shamdasani V, Kim Y. Ultrasound thyroid elastography using carotid artery pulsation: preliminary study. J Ultrasound Med. 2007;26(6):797–805.Google Scholar
  9. 9.
    Bercoff J, Tanter M, Muller M, Fink M. The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(11):1523–36.Google Scholar
  10. 10.
    Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.Google Scholar
  11. 11.
    Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. Am J Roentgenol. 2009;193(5):W416–23.Google Scholar
  12. 12.
    Lim DJ, Luo S, Kim MH, Ko SH, Kim Y. Interobserver agreement and intraobserver reproducibility in thyroid ultrasound elastography. Am J Roentgenol. 2012;198(4):896–901.Google Scholar
  13. 13.
    Sebag F, Vaillant-Lombard J, Berbis J, Griset V, Henry JF, Petit P, et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95(12):5281–8.Google Scholar
  14. 14.
    Kim H, Kim JA, Son EJ, Youk JH. Quantitative assessment of shear-wave ultrasound elastography in thyroid nodules: diagnostic performance for predicting malignancy. Eur Radiol. 2013;23(9):2532–7.Google Scholar
  15. 15.
    Zhang B, Ma X, Wu N, Liu L, Liu X, Zhang J, et al. Shear wave elastography for differentiation of benign and malignant thyroid nodules: a meta-analysis. J Ultrasound Med. 2013;32(12):2163–9.Google Scholar
  16. 16.
    Lyshchik A, Higashi T, Asato R, Tanaka S, Ito J, Hiraoka M, et al. Elastic moduli of thyroid tissues under compression. Ultrason Imaging. 2005;27(2):101–10.Google Scholar
  17. 17.
    Lyshchik A, Higashi T, Asato R, Tanaka S, Ito J, Mai JJ, et al. Thyroid gland tumor diagnosis at US elastography. Radiology. 2005;237(1):202–11.Google Scholar
  18. 18.
    Monpeyssen H, Tramalloni J, Poiree S, Helenon O, Correas JM. Elastography of the thyroid. Diagn Interv Imaging. 2013;94(5):535–44.Google Scholar
  19. 19.
    Wemeau JL, Sadoul JL, d'Herbomez M, Monpeyssen H, Tramalloni J, Leteurtre E, et al. Recommendations of the French Society of Endocrinology for the management of thyroid nodules. Presse Med. 2011;40(9 Pt 1):793–826.Google Scholar
  20. 20.
    Russ G, Royer B, Bigorgne C, Rouxel A, Bienvenu-Perrard M, Leenhardt L. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur J Endocrinol. 2013;168(5):649–55.Google Scholar
  21. 21.
    Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917–22.Google Scholar
  22. 22.
    Tranquart F, Bleuzen A, Pierre-Renoult P, Chabrolle C, Sam Giao M, Lecomte P. Elastosonography of thyroid lesions. J Radiol. 2008;89(1 Pt 1):35–9.Google Scholar
  23. 23.
    Asteria C, Giovanardi A, Pizzocaro A, Cozzaglio L, Morabito A, Somalvico F, et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid. 2008;18(5):523–31.Google Scholar
  24. 24.
    Bojunga J, Herrmann E, Meyer G, Weber S, Zeuzem S, Friedrich-Rust M. Real-time elastography for the differentiation of benign and malignant thyroid nodules: a meta-analysis. Thyroid. 2010;20(10):1145–50.Google Scholar
  25. 25.
    Monpeyssen H, Correas JM, Gauthier T, Tramalloni J, Helenon O. Quantitative elastography of thyroid nodules: preliminary results. Chicago: RSNA; 2008.Google Scholar
  26. 26.
    Cantisani V, D'Andrea V, Biancari F, Medvedyeva O, Di Segni M, Olive M, et al. Prospective evaluation of multiparametric ultrasound and quantitative elastosonography in the differential diagnosis of benign and malignant thyroid nodules: preliminary experience. Eur J Radiol. 2012;81(10):2678–83.Google Scholar
  27. 27.
    Vorlander C, Wolff J, Saalabian S, Lienenluke RH, Wahl RA. Real-time ultrasound elastography—a noninvasive diagnostic procedure for evaluating dominant thyroid nodules. Langenbeck’s Arch Surg. 2010;395(7):865–71.Google Scholar
  28. 28.
    Unluturk U, Erdogan MF, Demir O, Gullu S, Baskal N. Ultrasound elastography is not superior to grayscale ultrasound in predicting malignancy in thyroid nodules. Thyroid. 2012;22(10):1031–8.Google Scholar
  29. 29.
    Moon HJ, Sung JM, Kim EK, Yoon JH, Youk JH, Kwak JY. Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology. 2012;262(3):1002–13.Google Scholar
  30. 30.
    Veyrieres JB, Albarel F, Lombard JV, Berbis J, Sebag F, Oliver C, et al. A threshold value in shear wave elastography to rule out malignant thyroid nodules: a reality? Eur J Radiol. 2012;81(12):3965–72.Google Scholar
  31. 31.
    Bhatia KS, Tong CS, Cho CC, Yuen EH, Lee YY, Ahuja AT. Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol. 2012;22(11):2397–406.Google Scholar
  32. 32.
    Szczepanek-Parulska E, Wolinski K, Stangierski A, Gurgul E, Biczysko M, Majewski P, et al. Comparison of diagnostic value of conventional ultrasonography and shear wave elastography in the prediction of thyroid lesions malignancy. PLoS One. 2013;8(11):e81532.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Tian W, Hao S, Gao B, Jiang Y, Zhang S, Gu L, et al. Comparison of diagnostic accuracy of real-time elastography and shear wave elastography in differentiation malignant from benign thyroid nodules. Medicine (Baltimore). 2015;94(52):e2312.Google Scholar
  34. 34.
    Liu BJ, Li DD, Xu HX, Guo LH, Zhang YF, Xu JM, et al. Quantitative shear wave velocity measurement on acoustic radiation force impulse elastography for differential diagnosis between benign and malignant thyroid nodules: a meta-analysis. Ultrasound Med Biol. 2015;41(12):3035–43.Google Scholar
  35. 35.
    Park AY, Son EJ, Han K, Youk JH, Kim JA, Park CS. Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur J Radiol. 2015;84(3):407–12.Google Scholar
  36. 36.
    Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas JM, Gilja OH, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med. 2013;34(3):238–53.Google Scholar
  37. 37.
    Nell S, Kist JW, Debray TP, de Keizer B, van Oostenbrugge TJ, Borel Rinkes IH, et al. Qualitative elastography can replace thyroid nodule fine-needle aspiration in patients with soft thyroid nodules. A systematic review and meta-analysis. Eur J Radiol. 2015;84(4):652–61.PubMedGoogle Scholar
  38. 38.
    Cosgrove D, Barr R, Bojunga J, Cantisani V, Chammas MC, Dighe M, et al. WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 4. Thyroid. Ultrasound Med Biol. 2017;43(1):4–26.Google Scholar
  39. 39.
    Hu X, Liu Y, Qian L. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96(43):e8282.Google Scholar
  40. 40.
    He YP, Xu HX, Wang D, Li XL, Ren WW, Zhao CK, et al. First experience of comparisons between two different shear wave speed imaging systems in differentiating malignant from benign thyroid nodules. Clin Hemorheol Microcirc. 2017;65(4):349–61.Google Scholar
  41. 41.
    Veer V, Puttagunta S. The role of elastography in evaluating thyroid nodules: a literature review and meta-analysis. Eur Arch Otorhinolaryngol. 2015;272(8):1845–55.Google Scholar
  42. 42.
    Trimboli P, Guglielmi R, Monti S, Misischi I, Graziano F, Nasrollah N, et al. Ultrasound sensitivity for thyroid malignancy is increased by real-time elastography: a prospective multicenter study. J Clin Endocrinol Metab. 2012;97(12):4524–30.Google Scholar
  43. 43.
    Wemeau JL, Sadoul JL, d'Herbomez M, Monpeyssen H, Tramalloni J, Leteurtre E, et al. Guidelines of the French society of endocrinology for the management of thyroid nodules. Ann Endocrinol (Paris). 2011;72(4):251–81.Google Scholar
  44. 44.
    Leenhardt L, Erdogan MF, Hegedus L, Mandel SJ, Paschke R, Rago T, et al. 2013 European thyroid association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J. 2013;2(3):147–59.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Russ G, Bonnema SG, Erdogan MF, Durrante C, Ngu R, Leenhardt L. European thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS. Eur Thyroid J. 2017;6:225–37.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Fukuhara T, Matsuda E, Endo Y, Takenobu M, Izawa S, Fujiwara K, et al. Correlation between quantitative shear wave elastography and pathologic structures of thyroid lesions. Ultrasound Med Biol. 2015;41(9):2326–32.Google Scholar
  47. 47.
    Liu B, Liang J, Zhou L, Lu Y, Zheng Y, Tian W, et al. Shear wave Elastography in the diagnosis of thyroid nodules with coexistent chronic autoimmune Hashimoto’s thyroiditis. Otolaryngol Head Neck Surg. 2015;153(5):779–85.Google Scholar
  48. 48.
    Vlad M, Golu I, Bota S, Vlad A, Timar B, Timar R, et al. Real-time shear wave elastography may predict autoimmune thyroid disease. Wien Klin Wochenschr. 2015;127(9–10):330–6.Google Scholar
  49. 49.
    Ruchala M, Szmyt K, Slawek S, Zybek A, Szczepanek-Parulska E. Ultrasound sonoelastography in the evaluation of thyroiditis and autoimmune thyroid disease. Endokrynol Pol. 2014;65(6):520–6.Google Scholar
  50. 50.
    Slman R, Monpeyssen H, Desarnaud S, Haroche J, Fediaevsky Ldu P, Fabrice M, et al. Ultrasound, elastography, and fluorodeoxyglucose positron emission tomography/computed tomography imaging in Riedel's thyroiditis: report of two cases. Thyroid. 2011;21(7):799–804.Google Scholar
  51. 51.
    Jung WS, Kim JA, Son EJ, Youk JH, Park CS. Shear wave elastography in evaluation of cervical lymph node metastasis of papillary thyroid carcinoma: elasticity index as a prognostic implication. Ann Surg Oncol. 2015;22(1):111–6.Google Scholar
  52. 52.
    Batur A, Atmaca M, Yavuz A, Ozgokce M, Bora A, Bulut MD, et al. Ultrasound elastography for distinction between parathyroid adenomas and thyroid nodules. J Ultrasound Med. 2016.Google Scholar
  53. 53.
    Kim MH, Luo S, Ko SH, Jung SL, Lim DJ, Kim Y. Elastography can effectively decrease the number of fine-needle aspiration biopsies in patients with calcified thyroid nodules. Ultrasound Med Biol. 2014;40(10):2329–35.Google Scholar
  54. 54.
    Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19(11):1159–65.PubMedGoogle Scholar
  55. 55.
    Trimboli P, Treglia G, Sadeghi R, Romanelli F, Giovanella L. Reliability of real-time elastography to diagnose thyroid nodules previously read at FNAC as indeterminate: a meta-analysis. Endocrine. 2015;50(2):335–43.Google Scholar
  56. 56.
    Lippolis PV, Tognini S, Materazzi G, Polini A, Mancini R, Ambrosini CE, et al. Is elastography actually useful in the presurgical selection of thyroid nodules with indeterminate cytology? J Clin Endocrinol Metab. 2011;96(11):E1826–30.Google Scholar
  57. 57.
    Cappelli C, Pirola I, Gandossi E, Agosti B, Cimino E, Casella C, et al. Real-time elastography: a useful tool for predicting malignancy in thyroid nodules with nondiagnostic cytologic findings. J Ultrasound Med. 2012;31(11):1777–82.Google Scholar
  58. 58.
    Cantisani V, Maceroni P, D'Andrea V, Patrizi G, Di Segni M, De Vito C, et al. Strain ratio ultrasound elastography increases the accuracy of colour-Doppler ultrasound in the evaluation of Thy-3 nodules. A bi-Centre university experience. Eur Radiol. 2016;26(5):1441–9.Google Scholar
  59. 59.
    Samir AE, Dhyani M, Anvari A, Prescott J, Halpern EF, Faquin WC, et al. Shear-wave elastography for the preoperative risk stratification of follicular-patterned lesions of the thyroid: diagnostic accuracy and optimal measurement plane. Radiology. 2015;277(2):565–73.Google Scholar
  60. 60.
    Zhao CK, Xu HX, Xu JM, Sun CY, Chen W, Liu BJ, et al. Risk stratification of thyroid nodules with Bethesda category III results on fine-needle aspiration cytology: the additional value of acoustic radiation force impulse elastography. Oncotarget. 2017;8(1):1580–92.Google Scholar
  61. 61.
    Bardet S, Ciappuccini R, Pellot-Barakat C, Monpeyssen H, Michels JJ, Tissier F, et al. Shear wave elastography in thyroid nodules with indeterminate cytology: results of a prospective bicentric study. Thyroid. 2017.Google Scholar
  62. 62.
    Rago T, Scutari M, Santini F, Loiacono V, Piaggi P, Di Coscio G, et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab. 2010;95(12):5274–80.Google Scholar
  63. 63.
    Remonti LR, Kramer CK, Leitao CB, Pinto LC, Gross JL. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid. 2015;25(5):538–50.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Hervé Monpeyssen
    • 1
  • Jean Tramalloni
    • 1
  1. 1.American Hospital of ParisNeuilly-sur-SeineFrance

Personalised recommendations