Advertisement

Laboratory Testing in Thyroid Disorders

  • Stefan K. G. GrebeEmail author
Chapter

Abstract

For thyroid function evaluation, thyrotropin (TSH) is the usual starting point. TSH shows an exponential response to changing peripheral thyroid hormone levels, thereby providing high clinical detection sensitivity. Thyroxine (T4) or triiodothyronine (T3) is frequently measured alongside, mostly as free hormones (FT4 and FT3), to assess disease severity or treatment response. Some diseases require additional testing to determine the cause of observed abnormalities or to clarify contradictory results of TSH and T4/T3 testing. Thyroid autoantibody testing is important in this context.

Testing for structural thyroid disease centers on tumor markers, mainly thyroglobulin (Tg), calcitonin, and carcinoembryonic antigen, all of which are primarily used for follow-up. Tg immunoassays are not infrequently compromised by anti-Tg autoantibody interferences, which can be partially overcome by mass spectrometry (MS) Tg measurements.

Thyroid function tests and thyroid tumor markers have several limitations, which include (1) inaccurate immunoassay results in a subset of patients due to interferences by binding proteins, autoantibodies, heterophile antibodies, anti-reagent antibodies, or various chemicals, (2) some degree of compromised diagnostic performance due to suboptimal assay precision and inadequate reference ranges for almost all assays, and (3) poor comparability of results obtained by different assays for the same analyte.

These problems can potentially be solved by increased use of physicochemical methods (e.g., dialysis and MS), assay harmonization, improved reference ranges, and utilization of patient-specific reference intervals.

Keywords

Thyroid function testing Thyrotropin Thyroxine Triiodothyronine Reverse triiodothyronine Thyroid hormone-binding proteins Thyroid autoantibodies Tumor markers Thyroglobulin Calcitonin Carcinoembryonic antigen Competitive immunoassays Immunometric immunoassays Dialysis Centrifugal filtration Mass spectrometry Assay performance characteristics Assay dynamic range Limit of blank Limit of detection Limit of quantitation Accuracy Precision Imprecision Assay comparability Assay harmonization Assay standardization Assay interferences Anti-thyroglobulin autoantibodies Heterophile antibodies Biotin Reference range Reference interval Minimal significant change Index of assay individuality Patient specific reference interval 

References

  1. 1.
    Grebe SKG, Kahaly GJ. Laboratory testing in hyperthyroidism. Am J Med. 2012;125:S2.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Miot F, Dupuy C, Dumont J, Rousselt B. Thyroid hormone synthesis and secretion. In: DeGroot L, editor. Thyroid disease manager. South Dartmouth: Thyroidmanager.org; 2015.Google Scholar
  3. 3.
    Dedieu A, Gaillard J-C, Pourcher T, Darrouzet E, Armengaud J. Revisiting iodination sites in thyroglobulin with an organ-oriented shotgun strategy. J Biol Chem. 2011;286:259–69.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Laurberg P. Thyroxine and 3,5,3′-triiodothyronine content of thyroglobulin in thyroid needle aspirates in hyperthyroidism and hypothyroidism. J Clin Endocrinol Metabol. 1987;64:969–74.CrossRefGoogle Scholar
  5. 5.
    Grebe SKG. Soluble thyroid tumor markers—old and new challenges and potential solutions. N Z J Med Lab Sci. 2013;67:76–87.Google Scholar
  6. 6.
    Hillier AP, Balfour WE. Human thyroxine-binding globulin and thyroxine-binding pre-albumin: dissociation rates. J Physiol. 1971;217:625–34.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Schussler GC. The thyroxine-binding proteins. Thyroid. 2000;10:141–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Refetoff S. Thyroid hormone serum transport proteins. In: DeGroot L, editor. Thyroid disease manager. South Dartmouth: Thyroidmanager.org, Endicrine Education Inc.; 2015.Google Scholar
  9. 9.
    Visser JW, Friesema ECH, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol. 2011;25:1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sandler B, Webb P, Apriletti JW, et al. Thyroxine-thyroid hormone receptor interactions. J Biol Chem. 2004;279:55801–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Brent GA. Mechanisms of thyroid hormone action. J Clin Investig. 2012;122:3035–43.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Courtin F, Zrouri H, Lamirand A, et al. Thyroid hormone deiodinases in the central and peripheral nervous system. Thyroid. 2005;15:931–42.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Dentice M, Salvatore D. Local impact of thyroid hormone inactivation: deiodinases: the balance of thyroid hormone. J Endocrinol. 2011;209:273–82.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Larsen PR, Zavacki AM. Role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur Thyroid J. 2012;1:232–42.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Gereben B, McAninch EA, Ribeiro MO, Bianco AC. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol. 2015;11:642–52.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sawicki B. Evaluation of the role of mammalian thyroid parafollicular cells. Acta Histochem. 1995;97:389–99.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hirsch PF, Baruch H. Is calcitonin an important physiological substance? Endocrine. 2003;21:201–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Quarles LD. Extracellular calcium-sensing receptors in the parathyroid gland, kidney, and other tissues. Curr Opin Nephrol Hypertens. 2003;12:349–55.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Midgley JEM, Hoermann R, Larisch R, Dietrich JW. Physiological states and functional relation between thyrotropin and free thyroxine in thyroid health and disease: in vivo and in silico data suggest a hierarchical model. J Clin Pathol. 2013;66:335–42.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sakai H, Nagao H, Sakurai M, et al. Correlation between serum levels of 3,3′,5′-triiodothyronine and thyroid hormones measured by liquid chromatography-tandem mass spectrometry and immunoassay. PLoS One. 2015;10:e0138864.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rafferty B, Gaines-Das RE. Report of an international collaborative study of the proposed 3rd international standard for thyroid-stimulating hormone, human, for immunoassay. In: World Health Organization, editor. Endocrinological substances, January 5. 2016th ed. Geneva: World Health Organization; 2003. p. 1–25.Google Scholar
  22. 22.
    Estrada JM, Soldin D, Buckey TM, Burman KD, Soldin OP. Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice. Thyroid. 2014;24:411–23.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Schaefer S, Hassa PO, Sieber-Ruckstuhl NS, et al. Characterization of recombinant human and bovine thyroid-stimulating hormone preparations by mass spectrometry and determination of their endotoxin content. BMC Vet Res. 2013;9:1–7.CrossRefGoogle Scholar
  24. 24.
    Martel J, Despres N, Ahnadi CE, et al. Comparative multicentre study of a panel of thyroid tests using different automated immunoassay platforms and specimens at high risk of antibody interference. Clin Chem Lab Med. 2000;38:785–93.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    d’Herbomez M, Forzy G, Gasser F, Massart C, Beaudonnet A, Sapin R. Clinical evaluation of nine free thyroxine assays: persistent problems in particular populations. Clin Chem Lab Med. 2003;41:942–7.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Thienpont LM, Van Uytfanghe K, Beastall G, et al. Report of the IFCC working group for standardization of thyroid function tests; part 1: thyroid-stimulating hormone. Clin Chem. 2010;56:902–11.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Thienpont LM, Van Uytfanghe K, Beastall G, et al. Report of the IFCC working group for standardization of thyroid function tests; part 2: free thyroxine and free triiodothyronine. Clin Chem. 2010;56:912–20.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Giovannini S, Zucchelli GC, Iervasi G, et al. Multicentre comparison of free thyroid hormones immunoassays: the immunocheck study. Clin Chem Lab Med. 2011;49:1669–76.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sapin R, d'Herbomez M. Free thyroxine measured by equilibrium dialysis and nine immunoassays in sera with various serum thyroxine-binding capacities. Clin Chem. 2003;49:1531–5.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Jonklaas J, Sathasivam A, Wang H, Gu J, Burman KD, Soldin SJ. Total and free thyroxine and triiodothyronine: measurement discrepancies, particularly in inpatients. Clin Biochem. 2014;47:1272–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Grebe SKG. Diagnosis and management of thyroid carcinoma: a focus on serum thyroglobulin. Expert Rev Endocrinol Metab. 2009;4:25–43.CrossRefGoogle Scholar
  32. 32.
    Tate J, Ward G. Interferences in immunoassay. Clin Biochem Rev. 2004;25:105–20.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kwok JS-S, Chan IH-S, Chan MH-M. Biotin interference on TSH and free thyroid hormone measurement. Pathology. 2012;44:278–80.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Schiettecatte J, Anckaert E, Smitz J. Interferences in immunoassays. In: Chiu NHL, Christopoulos TK, editors. Advances in immunoassay technology. Rijeka: InTech; 2012. p. 45–62.Google Scholar
  35. 35.
    Bolstad N, Warren DJ, Nustad K. Heterophilic antibody interference in immunometric assays. Best Pract Res Clin Endocrinol Metab. 2013;27:647–61.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Gessl A, Blueml S, Bieglmayer C, Marculescu R. Anti-ruthenium antibodies mimic macro-TSH in electrochemiluminescent immunoassay. Clin Chem Lab Med. 2014;52:1589–94.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Minkovsky A, Lee MN, Dowlatshahi M, et al. High dose biotin treatment for secondary progressive multiple sclerosis may interfere with thyroid assays. AACE Clin Case Rep. 2016;2(4):e370–3.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hassan-Smith Z, Cooper MS. Overview of the endocrine response to critical illness: how to measure it and when to treat. Best Pract Res Clin Endocrinol Metab. 2011;25:705–17.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Mebis L, Van den Berghe G. Thyroid axis function and dysfunction in critical illness. Best Pract Res Clin Endocrinol Metab. 2011;25:745–57.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ross DS. Thyroid function in nonthyroidal illness. In: Post TW, Mulder JE, Cooper DS, editors. UpToDate; 2015.Google Scholar
  41. 41.
    Luongo C, Trivisano L, Alfano F, Salvatore D. Type 3 deiodinase and consumptive hypothyroidism: a common mechanism for a rare disease. Front Endocrinol. 2013;4:115.CrossRefGoogle Scholar
  42. 42.
    Verloop H, Dekkers OM, Peeters RP, Schoones JW, Smit JWA. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans. Eur J Endocrinol. 2014;171:R123–R35.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Taylor PN, Peeters R, Dayan CM. Genetic abnormalities in thyroid hormone deiodinases. Curr Opin Endocrinol Diabetes Obes. 2015;22:402–6.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Chopra IJ. An assessment of daily production and significance of thyroidal secretion of 3, 3′, 5′-triiodothyronine (reverse T3) in man. J Clin Investig. 1976;58:32–40.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Elisei R. Routine serum calcitonin measurement in the evaluation of thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2008;22:941–53.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Costante G, Durante C, Francis Z, Schlumberger M, Filetti S. Determination of calcitonin levels in C-cell disease: clinical interest and potential pitfalls. Nat Clin Pract Endocrinol Metab. 2009;5:35–44.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Laure Giraudet A, Al Ghulzan A, Aupérin A, et al. Progression of medullary thyroid carcinoma: assessment with calcitonin and carcinoembryonic antigen doubling times. Eur J Endocrinol. 2008;158:239–46.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Gawlik T, d’Amico A, Szpak-Ulczok S, et al. The prognostic value of tumor markers doubling times in medullary thyroid carcinoma—preliminary report. Thyroid Res. 2010;3:1–5.CrossRefGoogle Scholar
  49. 49.
    Trimboli P, Giovanella L. Serum calcitonin negative medullary thyroid carcinoma: a systematic review of the literature. Clin Chem Lab Med. 2015;53:1507–14. https://doi.org/10.15/cclm-2015-0058 PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Netzel BC, Grebe SKG, Carranza Leon BG, et al. Thyroglobulin (Tg) testing revisited: Tg assays, TgAb assays, and correlation of results with clinical outcomes. J Clin Endocrinol Metab. 2015;100:E1074–83.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Netzel BC, Grant RP, Hoofnagle AN, Rockwood AL, Shuford CM, Grebe SKG. First steps toward harmonization of LC-MS/MS thyroglobulin assays. Clin Chem. 2016;62:297–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Miyauchi A, Kudo T, Miya A, et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 2011;21:707–16.  https://doi.org/10.1089/thy.2010.0355. Epub 2011 Jun 7CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Haugen BR, Alexander EK, Bible KC, et al. American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;26:1–133.CrossRefGoogle Scholar
  54. 54.
    Giovanella L, Clark PM, Chiovato L, et al. Diagnosis of endocrine disease: thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol. 2014;171:R33–46.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Spencer C, Fatemi S. Thyroglobulin antibody (TgAb) methods—strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2013;27:701–12.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kushnir MM, Rockwood AL, Roberts WL, Abraham D, Hoofnagle AN, Meikle AW. Measurement of thyroglobulin by liquid chromatography–tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies. Clin Chem. 2013;59:982–90.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Algeciras-Schimnich A, Preissner CM, Theobald JP, Finseth MS, Grebe SKG. Procalcitonin: a marker for the diagnosis and follow-up of patients with medullary thyroid carcinoma. J Clin Endocrinol Metab. 2009;94:861–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Trimboli P, Seregni E, Treglia G, Alevizaki M, Giovanella L. Procalcitonin for detecting medullary thyroid carcinoma: a systematic review. Endocr Relat Cancer. 2015;22:R157–R64.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Leschik JJ, Diana T, Olivo PD, et al. Analytical performance and clinical utility of a bioassay for thyroid-stimulating immunoglobulins. Am J Clin Pathol. 2013;139:192–200.  https://doi.org/10.1309/AJCPZUT7CNUEU7OP.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Giuliani C, Saji M, Bucci I, Napolitano G. Bioassays for TSH receptor autoantibodies, from FRTL-5 cells to TSH receptor–LH/CG receptor chimeras: the contribution of Leonard D. Kohn. Front Endocrinol. 2016;7:103.CrossRefGoogle Scholar
  61. 61.
    Latif R, Ali MR, Mezei M, Davies TF. Transmembrane domains of attraction on the TSH receptor. Endocrinology. 2015;156:488–98.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    La'ulu SL, Slev PR, Roberts WL. Performance characteristics of 5 automated thyroglobulin autoantibody and thyroid peroxidase autoantibody assays. Clin Chim Acta. 2007;376:88–95.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Massart C, Sapin R, Gibassier J, Agin A, d'Herbomez M. Intermethod variability in TSH-receptor antibody measurement: implication for the diagnosis of graves disease and for the follow-up of graves ophthalmopathy. Clin Chem. 2009;55:183–6.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Browning MC, Ford RP, Callaghan SJ, Fraser CG. Intra- and interindividual biological variation of five analytes used in assessing thyroid function: implications for necessary standards of performance and the interpretation of results. Clin Chem. 1986;32:962–6.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Andersen S, Pedersen KM, Bruun NH, Laurberg P. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab. 2002;87:1068–72.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Andersen S, Bruun NH, Pedersen KM, Laurberg P. Biologic variation is important for interpretation of thyroid function tests. Thyroid. 2003;13:1069–78.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ankrah-Tetteh T, Wijeratne S, Swaminathan R. Intraindividual variation in serum thyroid hormones, parathyroid hormone and insulin-like growth factor-1. Ann Clin Biochem. 2008;45:167–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Erden G, Barazi AO, Tezcan G, Yildirimkaya M. Biological variation and reference change values of TSH, free T3, and free T4 levels in serum of healthy Turkish individuals. Turk J Med Sci. 2008;38:153–8.Google Scholar
  69. 69.
    Boas M, Forman JL, Juul A, et al. Narrow intra-individual variation of maternal thyroid function in pregnancy based on a longitudinal study on 132 women. Eur J Endocrinol. 2009;161:903–10.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hubner U, Englisch C, Werkmann H, et al. Continuous age-dependent reference ranges for thyroid hormones in neonates, infants, children and adolescents established using the ADVIA centaur analyzer. Clin Chem Lab Med. 2002;40:1040–7.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    La’ulu SL, Roberts WL. Second-trimester reference intervals for thyroid tests: the role of ethnicity. Clin Chem. 2007;53:1658–64.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Friis-Hansen L, Hilsted L. Reference intervals for thyreotropin and thyroid hormones for healthy adults based on the NOBIDA material and determined using a modular E170. Clin Chem Lab Med. 2008;46:1305–12.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Laurberg P, Andersen S, Carle A, Karmisholt J, Knudsen N, Pedersen IB. The TSH upper reference limit: where are we at? Nat Rev Endocrinol. 2011;7:232–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Deary M, Buckey T, Soldin OP. TSH—clinical aspects of its use in determining thyroid disease in the elderly how does it impact the practice of medicine in aging? Adv Pharmacoepidemiol Drug Saf. 2012;1:9369.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fan J-X, Han M, Tao J, et al. Reference intervals for common thyroid function tests, during different stages of pregnancy in Chinese women. Chin Med J. 2013;126:2710–4.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Fontes R, Coeli CR, Aguiar F, Vaisman M. Reference interval of thyroid stimulating hormone and free thyroxine in a reference population over 60 years old and in very old subjects (over 80 years): comparison to young subjects. Thyroid Res. 2013;6:13.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ichihara K, Ceriotti F, Kazuo M, et al. The Asian project for collaborative derivation of reference intervals: (2) results of non-standardized analytes and transference of reference intervals to the participating laboratories on the basis of cross-comparison of test results. Clin Chem Lab Med. 2013;51:1443–57.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Magri F, Muzzoni B, Cravello L, et al. Thyroid function in physiological aging and in centenarians: possible relationships with some nutritional markers. Metabolism. 2002;51:105–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Bailey D, Colantonio D, Kyriakopoulou L, et al. Marked biological variance in endocrine and biochemical markers in childhood: establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin Chem. 2013;59:1393–405.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Perich C, Minchinela J, Ricos C, et al. Biological variation database: structure and criteria used for generation and update. Clin Chem Lab Med. 2015;53:299–305.  https://doi.org/10.1515/cclm-2014-0739.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lytton SD, Ponto KA, Kanitz M, Matheis N, Kohn LD, Kahaly GJ. A novel thyroid stimulating immunoglobulin bioassay is a functional Indicator of activity and severity of graves’ orbitopathy. J Clin Endocrinol Metabol. 2010;95:2123–31.CrossRefGoogle Scholar
  82. 82.
    Barbesino G, Tomer Y. Clinical utility of TSH receptor antibodies. J Clin Endocrinol Metabol. 2013;98:2247–55.CrossRefGoogle Scholar
  83. 83.
    The American Thyroid Association Taskforce on Thyroid Disease During Pregnancy and Postpartum, Stagnaro-Green A, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid. 2011;21:1081–125.PubMedCentralCrossRefGoogle Scholar
  84. 84.
    Groot LD, Abalovich M, Alexander EK, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metabol. 2012;97:2543–65.CrossRefGoogle Scholar
  85. 85.
    Batra CM. Fetal and neonatal thyrotoxicosis. Indian J Endocrinol Metab. 2013;17:S50–S4.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Jordan V, Grebe SK, Cooke RR, et al. Acidic isoforms of chorionic gonadotrophin in European and Samoan women are associated with hyperemesis gravidarum and may be thyrotrophic. Clin Endocrinol. 1999;50:619–27.CrossRefGoogle Scholar
  87. 87.
    Labadzhyan A, Brent GA, Hershman JM, Leung AM. Thyrotoxicosis of pregnancy. J Clin Transl Endocrinol. 2014;1(4):140.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Rodien P, Brémont C, Sanson M-LR, et al. Familial gestational hyperthyroidism caused by a mutant thyrotropin receptor hypersensitive to human chorionic gonadotropin. N Engl J Med. 1998;339:1823–6.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lazarus JH. Thyroid disease in pregnancy and childhood. Minerva Endocrinol. 2005;30:71–87.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Cansu A, Serdaroglu A, Camurdan O, Hirfanoglu T, Bideci A, Gucuyener K. The evaluation of thyroid functions, thyroid antibodies, and thyroid volumes in children with epilepsy during short-term administration of oxcarbazepine and valproate. Epilepsia. 2006;47:1855–9.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Verrotti A, Laus M, Scardapane A, Franzoni E, Chiarelli F. Thyroid hormones in children with epilepsy during long-term administration of carbamazepine and valproate. Eur J Endocrinol. 2009;160:81–6.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Barbesino G. Drugs affecting thyroid function. Thyroid. 2010;20:763–70.  https://doi.org/10.1089/thy.2010.1635.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Fatourechi V. Subclinical hypothyroidism: an update for primary care physicians. Mayo Clin Proc. 2009;84:65–71.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cooper DS, Biondi B. Subclinical thyroid disease. Lancet. 2012;379:1142–54.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Cartwright D, O’Shea P, Rajanayagam O, et al. Familial dysalbuminemic hyperthyroxinemia: a persistent diagnostic challenge. Clin Chem. 2009;55:1044–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Beck-Peccoz P, Persani L, Mannavola D, Campi I. TSH-secreting adenomas. Best Pract Res Clin Endocrinol Metab. 2009;23:597–606.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Giovanella L, Ceriani L, Maffioli M. Postsurgery serum thyroglobulin disappearance kinetic in patients with differentiated thyroid carcinoma. Head Neck. 2010;32:568–71.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Tegler L, Ericsson UB, Gillquist J, Lindvall R. Basal and thyrotropin-stimulated secretion rates of thyroglobulin from the human thyroid gland during surgery. Thyroid. 1993;3:213–7.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Demers LM, Spencer CA. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid. 2003;13:3–126.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Fugazzola L. Stimulated calcitonin cut-offs by different tests. Eur Thyroid J. 2013;2:49–56.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA

Personalised recommendations