Anti-parasitic Antibodies from Phage Display

  • Luiz R. GoulartEmail author
  • Vanessa da S. Ribeiro
  • Julia M. Costa-Cruz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1053)


Parasite infections affect billions of people and their domesticated animals worldwide, and remain as a significant cause of morbidity and mortality, but such diseases are still neglected in endemic countries. Therapeutic interventions consisted mostly of drugs, which are highly toxic and may lead to resistance. The immunopathology of parasites is very complex due to their multistage life cycles and long lifetime involving several hosts, leading many times to chronic infections and sometimes to death, by compromising nutritional status, affecting cognitive processes, and inducing severe tissue reactions. Vaccination is a challenge, and immunotherapy is completely disregarded because of their complex interactions with hosts and vectors. This review will bring concepts of immunological aspects for some important parasitic infections, and present the most recent phage display-derived antibodies or peptidomimetics for parasite targets. This chapter will also discuss the future perspectives of such potential anti-infective immunobiologicals for parasitic diseases.


Antibody Phage display Immunopathology Malaria Leishmaniasis Toxoplasmosis Helminthiasis Schistosomiasis Parasitic diseases 


  1. 1.
    Abdossamadi Z, Seyed N, Rafati S (2016) Mammalian host defense peptides and their implication on combating Leishmania infection. Cell Immunol 309:23–31PubMedCrossRefGoogle Scholar
  2. 2.
    Abeijon C, Singh OP, Chakravarty J, Sundar S, Campos-Neto A (2016) Novel antigen detection assay to monitor therapeutic efficacy of Visceral leishmaniasis. Am J Trop Med Hyg 95(4):800–802PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Afonso AM, Ebell MH, Tarleton RL (2012) A systematic review of high quality diagnostic tests for Chagas disease. PLoS Negl Trop Dis 6(11):e1881PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Alam MS, Rathore S, Tyagi RK, Sharma YD (2016) Host-parasite interaction: multiple sites in the Plasmodium vivax tryptophan-rich antigen PvTRAg38 interact with the erythrocyte receptor band 3. FEBS Lett 590(2):232–241PubMedCrossRefGoogle Scholar
  5. 5.
    Alcolea PJ, Alonso A, Larraga V (2016) Rationale for selection of developmentally regulated genes as vaccine candidates against Leishmania infantum infection. Vaccine 34(46):5474–5478PubMedCrossRefGoogle Scholar
  6. 6.
    Anthony RM, Rutitzky LI, Urban JF Jr, Stadecker MJ, Gause WC (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7(12):975–987PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Arrow KJ, Panosian C, Gelband H (2004) Antimalarial Drugs and Drug Resistance. In: Arrow KJ, Panosian C, Gelband H (eds) Saving lives, buying time: economics of malaria drugs in an age of resistance. The National Academies Press, Washington, DC, p 388Google Scholar
  8. 8.
    Bisoffi Z, Buonfrate D, Montresor A, Requena-Mendez A, Munoz J, Krolewiecki AJ, Gotuzzo E, Mena MA, Chiodini PL, Anselmi M, Moreira J, Albonico M (2013) Strongyloides stercoralis: a plea for action. PLoS Negl Trop Dis 7(5):e2214PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Brito CF, Oliveira GC, Oliveira SC, Street M, Riengrojpitak S, Wilson RA, Simpson AJ, Correa-Oliveira R (2002) Sm14 gene expression in different stages of the Schistosoma mansoni life cycle and immunolocalization of the Sm14 protein within the adult worm. Braz J Med Biol Res 35(3):377–381PubMedCrossRefGoogle Scholar
  10. 10.
    Buonfrate D, Formenti F, Perandin F, Bisoffi Z (2015) Novel approaches to the diagnosis of Strongyloides stercoralis infection. Clin Microbiol Infect 21(6):543–552PubMedCrossRefGoogle Scholar
  11. 11.
    Campeotto I, Goldenzweig A, Davey J, Barfod L, Marshall JM, Silk SE, Wright KE, Draper SJ, Higgins MK, Fleishman SJ (2017) One-step design of a stable variant of the malaria invasion protein RH5 for use as a vaccine immunogen. Proc Natl Acad Sci U S A 114(5):998–1002PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    CDC (2015, November 19). Malaria diagnosis (United States). Retrieved 18 Nov 2016, from
  13. 13.
    Cha SJ, Kim MS, Pandey A, Jacobs-Lorena M (2016) Identification of GAPDH on the surface of Plasmodium sporozoites as a new candidate for targeting malaria liver invasion. J Exp Med 213(10):2099–2112PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5(11):873–882PubMedCrossRefGoogle Scholar
  16. 16.
    Chaturvedi N, Bharti PK, Tiwari A, Singh N (2016) Strategies & recent development of transmission-blocking vaccines against Plasmodium falciparum. Indian J Med Res 143(6):696–711PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cheng Y, Lu F, Wang B, Li J, Han JH, Ito D, Kong DH, Jiang L, Wu J, Ha KS, Takashima E, Sattabongkot J, Cao J, Nyunt MH, Kyaw MP, Desai SA, Miller LH, Tsuboi T, Han ET (2016) Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA) binds human erythrocytes independent of Duffy antigen status. Sci Rep 6:35581PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cimino RO, Rumi MM, Ragone P, Lauthier J, D’Amato AA, Quiroga IR, Gil JF, Cajal SP, Acosta N, Juarez M, Krolewiecki A, Orellana V, Zacca R, Marcipar I, Diosque P, Nasser JR (2011) Immuno-enzymatic evaluation of the recombinant TSSA-II protein of Trypanosoma cruzi in dogs and human sera: a tool for epidemiological studies. Parasitology 138(8):995–1002PubMedCrossRefGoogle Scholar
  19. 19.
    Coakley G, Buck AH, Maizels RM (2016) Host parasite communications-Messages from helminths for the immune system: parasite communication and cell-cell interactions. Mol Biochem Parasitol 208(1):33–40PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Costa LE, Chavez-Fumagalli MA, Martins VT, Duarte MC, Lage DP, Lima MI, Pereira NC, Soto M, Tavares CA, Goulart LR, Coelho EA (2015) Phage-fused epitopes from Leishmania infantum used as immunogenic vaccines confer partial protection against Leishmania amazonensis infection. Parasitology 142(10):1335–1347PubMedCrossRefGoogle Scholar
  21. 21.
    Costa LE, Goulart LR, Pereira NC, Lima MI, Duarte MC, Martins VT, Lage PS, Menezes-Souza D, Ribeiro TG, Melo MN, Fernandes AP, Soto M, Tavares CA, Chavez-Fumagalli MA, Coelho EA (2014) Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against Visceral leishmaniasis. PLoS One 9(10):e110014PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Costa LE, Salles BC, Alves PT, Dias AC, Vaz ER, Ramos FF, Menezes-Souza D, Duarte MC, Roatt BM, Chavez-Fumagalli MA, Tavares CA, Goncalves DU, Rocha MO, Goulart LR, Coelho EA (2016) New serological tools for improved diagnosis of human tegumentary leishmaniasis. J Immunol Methods 434:39–45PubMedCrossRefGoogle Scholar
  23. 23.
    Debierre-Grockiego F, Azzouz N, Schmidt J, Dubremetz JF, Geyer H, Geyer R, Weingart R, Schmidt RR, Schwarz RT (2003) Roles of glycosylphosphatidylinositols of Toxoplasma gondii. Induction of tumor necrosis factor-alpha production in macrophages. J Biol Chem 278(35):32987–32993PubMedCrossRefGoogle Scholar
  24. 24.
    Del Brutto OH (2012) Diagnostic criteria for neurocysticercosis, revisited. Pathog Glob Health 106(5):299–304PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dlugonska H (2008) Toxoplasma rhoptries: unique secretory organelles and source of promising vaccine proteins for immunoprevention of toxoplasmosis. J Biomed Biotechnol 2008:632424PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Duarte MC, Lage DP, Martins VT, Chavez-Fumagalli MA, Roatt BM, Menezes-Souza D, Goulart LR, Soto M, Tavares CA, Coelho EA (2016) Recent updates and perspectives on approaches for the development of vaccines against Visceral leishmaniasis. Rev Soc Bras Med Trop 49(4):398–407PubMedCrossRefGoogle Scholar
  27. 27.
    Dumonteil E, Bottazzi ME, Zhan B, Heffernan MJ, Jones K, Valenzuela JG, Kamhawi S, Ortega J, Rosales SP, Lee BY, Bacon KM, Fleischer B, Slingsby BT, Cravioto MB, Tapia-Conyer R, Hotez PJ (2012) Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines 11(9):1043–1055PubMedCrossRefGoogle Scholar
  28. 28.
    Dutta S, Kaushal DC, Ware LA, Puri SK, Kaushal NA, Narula A, Upadhyaya DS, Lanar DE (2005) Merozoite surface protein 1 of Plasmodium vivax induces a protective response against Plasmodium cynomolgi challenge in rhesus monkeys. Infect Immun 73(9):5936–5944PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Eksi S, Czesny B, van Gemert GJ, Sauerwein RW, Eling W, Williamson KC (2006) Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production. Mol Microbiol 61(4):991–998PubMedCrossRefGoogle Scholar
  30. 30.
    Fabbro DL, Streiger ML, Arias ED, Bizai ML, del Barco M, Amicone NA (2007) Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe city (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev Soc Bras Med Trop 40(1):1–10PubMedCrossRefGoogle Scholar
  31. 31.
    Feliciano ND, Ribeiro Vda S, Santos Fde A, Fujimura PT, Gonzaga HT, Goulart LR, Costa-Cruz JM (2014) Bacteriophage-fused peptides for serodiagnosis of human strongyloidiasis. PLoS Negl Trop Dis 8(5):e2792PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Feliciano ND, Ribeiro VS, Gonzaga HT, Santos FA, Fujimura PT, Goulart LR, Costa-Cruz JM (2016) Short epitope-based synthetic peptides for serodiagnosis of human strongyloidiasis. Immunol Lett 172:89–93PubMedCrossRefGoogle Scholar
  33. 33.
    Flegr J (2013) Influence of latent toxoplasma infection on human personality, physiology and morphology: pros and cons of the toxoplasma-human model in studying the manipulation hypothesis. J Exp Biol 216(Pt 1):127–133PubMedCrossRefGoogle Scholar
  34. 34.
    Gao DM, Wang SP, He Z, Fung MC, Liu MS, Yu LX, Chen XC (2010) Schistosoma japonicum: screening of cercariae cDNA library by specific single-chain antibody against SIEA26-28 ku and immunization experiment of the recombinant plasmids containing the selected genes. Parasitol Res 107(1):127–134PubMedCrossRefGoogle Scholar
  35. 35.
    Gazzinelli RT, Galvao LM, Krautz G, Lima PC, Cancado JR, Scharfstein J, Krettli AU (1993) Use of Trypanosoma cruzi purified glycoprotein (GP57/51) or trypomastigote-shed antigens to assess cure for human Chagas’ disease. Am J Trop Med Hyg 49(5):625–635PubMedCrossRefGoogle Scholar
  36. 36.
    Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, Schofield L, Crabb BS (2006) Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 5(7):1286–1299PubMedCrossRefGoogle Scholar
  37. 37.
    Gonzalez E, Robles Y, Govezensky T, Bobes RJ, Gevorkian G, Manoutcharian K (2010) Isolation of neurocysticercosis-related antigens from a genomic phage display library of Taenia solium. J Biomol Screen 15(10):1268–1273PubMedCrossRefGoogle Scholar
  38. 38.
    Goulart LR, Santos PS, Carneiro AP, Santana BB, Vallinoto AC, Araujo TG (2016) Unraveling antibody display: systems biology and personalized medicine. Curr Pharm Des 22(43):6560–6576PubMedCrossRefGoogle Scholar
  39. 39.
    Goulart LR, Vieira CU, Freschi AP, Capparelli FE, Fujimura PT, Almeida JF, Ferreira LF, Goulart IM, Brito-Madurro AG, Madurro JM (2010) Biomarkers for serum diagnosis of infectious diseases and their potential application in novel sensor platforms. Crit Rev Immunol 30(2):201–222PubMedCrossRefGoogle Scholar
  40. 40.
    Griffith Q, Liang Y, Whitworth P, Rodriguez-Russo C, Gul A, Siddiqui AA, Connor J, Mwinzi P, Ganley-Leal L (2015) Immuno-evasive tactics by schistosomes identify an effective allergy preventative. Exp Parasitol 153:139–150PubMedCrossRefGoogle Scholar
  41. 41.
    Griffiths AD, Duncan AR (1998) Strategies for selection of antibodies by phage display. Curr Opin Biotechnol 9(1):102–108PubMedCrossRefGoogle Scholar
  42. 42.
    Guo A, Cai X, Jia W, Liu B, Zhang S, Wang P, Yan H, Luo X (2010) Mapping of Taenia solium TSOL18 antigenic epitopes by phage display library. Parasitol Res 106(5):1151–1157PubMedCrossRefGoogle Scholar
  43. 43.
    Gupta S, Garg NJ (2015) A two-component DNA-prime/protein-boost vaccination strategy for eliciting long-term, protective T cell immunity against Trypanosoma cruzi. PLoS Pathog 11(5):e1004828PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hell RC, Amim P, de Andrade HM, de Avila RA, Felicori L, Oliveira AG, Oliveira CA, Nascimento E, Tavares CA, Granier C, Chavez-Olortegui C (2009) Immunodiagnosis of human neurocysticercosis using a synthetic peptide selected by phage-display. Clin Immunol 131(1):129–138PubMedCrossRefGoogle Scholar
  45. 45.
    Hemingway J, Shretta R, Wells TN, Bell D, Djimde AA, Achee N, Qi G (2016) Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol 14(3):e1002380PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Holec-Gasior L (2013) Toxoplasma gondii recombinant antigens as tools for serodiagnosis of human toxoplasmosis: current status of studies. Clin Vaccine Immunol 20(9):1343–1351PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hosking CG, Driguez P, McWilliam HE, Ilag LL, Gladman S, Li Y, Piedrafita D, McManus DP, Meeusen EN, de Veer MJ (2015) Using the local immune response from the natural buffalo host to generate an antibody fragment library that binds the early larval stages of Schistosoma japonicum. Int J Parasitol 45(11):729–740PubMedCrossRefGoogle Scholar
  48. 48.
    Hosking CG, McWilliam HE, Driguez P, Piedrafita D, Li Y, McManus DP, Ilag LL, Meeusen EN, Veer MJ (2015) Generation of a novel bacteriophage library displaying scFv antibody fragments from the natural buffalo host to identify antigens from adult Schistosoma japonicum for diagnostic development. PLoS Negl Trop Dis 9(12):e0004280PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hotez PJ, Dumonteil E, Heffernan MJ, Bottazzi ME (2013) Innovation for the ‘bottom 100 million’: eliminating neglected tropical diseases in the Americas. Adv Exp Med Biol 764:1–12PubMedGoogle Scholar
  50. 50.
    Huerta M, de Aluja AS, Fragoso G, Toledo A, Villalobos N, Hernandez M, Gevorkian G, Acero G, Diaz A, Alvarez I, Avila R, Beltran C, Garcia G, Martinez JJ, Larralde C, Sciutto E (2001) Synthetic peptide vaccine against Taenia solium pig cysticercosis: successful vaccination in a controlled field trial in rural Mexico. Vaccine 20(1–2):262–266PubMedCrossRefGoogle Scholar
  51. 51.
    Ikezawa H (2002) Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 25(4):409–417PubMedCrossRefGoogle Scholar
  52. 52.
    Jayashi CM, Kyngdon CT, Gauci CG, Gonzalez AE, Lightowlers MW (2012) Successful immunization of naturally reared pigs against porcine cysticercosis with a recombinant oncosphere antigen vaccine. Vet Parasitol 188(3–4):261–267PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Keizer DW, Miles LA, Li F, Nair M, Anders RF, Coley AM, Foley M, Norton RS (2003) Structures of phage-display peptides that bind to the malarial surface protein, apical membrane antigen 1, and block erythrocyte invasion. Biochemistry 42(33):9915–9923PubMedCrossRefGoogle Scholar
  54. 54.
    Kim SH, Hwang SY, Lee YS, Choi IH, Park SG, Kho WG (2007) Single-chain antibody fragment specific for Plasmodium vivax Duffy binding protein. Clin Vaccine Immunol 14(6):726–731PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Langsley G, Roth C (1987) Antigenic variation in parasitic protozoa. Microbiol Sci 4(9):280–285PubMedGoogle Scholar
  56. 56.
    Leow CH, Jones M, Cheng Q, Mahler S, McCarthy J (2014) Production and characterization of specific monoclonal antibodies binding the Plasmodium falciparum diagnostic biomarker, histidine-rich protein 2. Malar J 13:277PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Levenhagen MA, Santos FA, Fujimura PT, Carneiro AP, Costa-Cruz JM, Goulart LR (2015) Structural and functional characterization of a novel scFv anti-HSP60 of Strongyloides sp. Sci Rep 5:10447PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Li F, Dluzewski A, Coley AM, Thomas A, Tilley L, Anders RF, Foley M (2002) Phage-displayed peptides bind to the malarial protein apical membrane antigen-1 and inhibit the merozoite invasion of host erythrocytes. J Biol Chem 277(52):50303–50310PubMedCrossRefGoogle Scholar
  59. 59.
    Liu Q, Singla LD, Zhou H (2012) Vaccines against Toxoplasma gondii: status, challenges and future directions. Hum Vaccin Immunother 8(9):1305–1308PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Liu Q, Wang ZD, Huang SY, Zhu XQ (2015) Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors 8:292PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Liu Q, Zhou XN (2015) Preventing the transmission of American trypanosomiasis and its spread into non-endemic countries. Infect Dis Poverty 4:60PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Longley RJ, Halbroth BR, Salman AM, Ewer KJ, Hodgson SH, Janse CJ, Khan SM, Hill AV, Spencer AJ (2017) Assessment of the Plasmodium falciparum preerythrocytic antigen UIS3 as a potential candidate for a malaria vaccine. Infect Immun 85(3):e00641PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lopes FMR, Mtsuka-Breganó R, Lemos R, Navarro IT (2007) Toxoplasma gondii infection in pregnancy. Braz J Med Infect Dis 11(5):496–506Google Scholar
  64. 64.
    MacDonald AS, Araujo MI, Pearce EJ (2002) Immunology of parasitic helminth infections. Infect Immun 70(2):427–433PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Mahmoudi S and Keshavarz H (2017) Efficacy of Phase 3 Trial of RTS, S/AS01 Malaria Vaccine in infants: a systematic review and meta-analysis. Hum Vaccin Immunother: Jan 6:0. doi:  10.1080/21645515.2016.1271686. [Epub ahead of print]
  66. 66.
    Manhani MN, Ribeiro VS, Cardoso R, Ueira-Vieira C, Goulart LR, Costa-Cruz JM (2011) Specific phage-displayed peptides discriminate different forms of neurocysticercosis by antibody detection in the serum samples. Parasite Immunol 33(6):322–329PubMedCrossRefGoogle Scholar
  67. 67.
    Manoutcharian K, Diaz-Orea A, Gevorkian G, Fragoso G, Acero G, Gonzalez E, De Aluja A, Villalobos N, Gomez-Conde E, Sciutto E (2004) Recombinant bacteriophage-based multiepitope vaccine against Taenia solium pig cysticercosis. Vet Immunol Immunopathol 99(1–2):11–24PubMedCrossRefGoogle Scholar
  68. 68.
    Manoutcharian K, Terrazas LI, Gevorkian G, Acero G, Petrossian P, Rodriguez M, Govezensky T (1999) Phage-displayed T-cell epitope grafted into immunoglobulin heavy-chain complementarity-determining regions: an effective vaccine design tested in murine cysticercosis. Infect Immun 67(9):4764–4770PubMedPubMedCentralGoogle Scholar
  69. 69.
    McConville MJ, Ferguson MA (1993) The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 294(Pt 2):305–324PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    McIntosh RS, Shi J, Jennings RM, Chappel JC, de Koning-Ward TF, Smith T, Green J, van Egmond M, Leusen JH, Lazarou M, van de Winkel J, Jones TS, Crabb BS, Holder AA, Pleass RJ (2007) The importance of human FcgammaRI in mediating protection to malaria. PLoS Pathog 3(5):e72PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    McManus DP, Loukas A (2008) Current status of vaccines for schistosomiasis. Clin Microbiol Rev 21(1):225–242PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Montoya JG (2002) Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis. J Infect Dis 185(Suppl 1):S73–S82PubMedCrossRefGoogle Scholar
  73. 73.
    Montoya JG, Liesenfeld O (2004) Toxoplasmosis. Lancet 363(9425):1965–1976PubMedCrossRefGoogle Scholar
  74. 74.
    Muerhoff AS, Birkenmeyer LG, Coffey R, Dille BJ, Barnwell JW, Collins WE, Sullivan JS, Dawson GJ, Desai SM (2010) Detection of Plasmodium falciparum, P. vivax, P. ovale, and P. malariae merozoite surface protein 1-p19 antibodies in human malaria patients and experimentally infected nonhuman primates. Clin Vaccine Immunol 17(10):1631–1638PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mutiso JM, Macharia JC, Kiio MN, Ichagichu JM, Rikoi H, Gicheru MM (2013) Development of Leishmania vaccines: predicting the future from past and present experience. J Biomed Res 27(2):85–102PubMedGoogle Scholar
  76. 76.
    Nagill R, Kaur S (2011) Vaccine candidates for leishmaniasis: a review. Int Immunopharmacol 11(10):1464–1488PubMedCrossRefGoogle Scholar
  77. 77.
    Narum DL, Ogun SA, Batchelor AH, Holder AA (2006) Passive immunization with a multicomponent vaccine against conserved domains of apical membrane antigen 1 and 235-kilodalton rhoptry proteins protects mice against Plasmodium yoelii blood-stage challenge infection. Infect Immun 74(10):5529–5536PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nath-Chowdhury M, Sangaralingam M, Bastien P, Ravel C, Pratlong F, Mendez J, Libman M, Ndao M (2016) Real-time PCR using FRET technology for Old World cutaneous leishmaniasis species differentiation. Parasit Vectors 9:255PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Obishakin E, Stijlemans B, Santi-Rocca J, Vandenberghe I, Devreese B, Muldermans S, Bastin P, Magez S (2014) Generation of a nanobody targeting the paraflagellar rod protein of trypanosomes. PLoS One 9(12):e115893PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 18(2):293–305PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Palacpac NM, Ntege E, Yeka A, Balikagala B, Suzuki N, Shirai H, Yagi M, Ito K, Fukushima W, Hirota Y, Nsereko C, Okada T, Kanoi BN, Tetsutani K, Arisue N, Itagaki S, Tougan T, Ishii KJ, Ueda S, Egwang TG, Horii T (2013) Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36. PLoS One 8(5):e64073PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Pearce EJ, Sher A (1987) Mechanisms of immune evasion in schistosomiasis. Contrib Microbiol Immunol 8:219–232PubMedGoogle Scholar
  83. 83.
    Polonelli L, Ciociola T, Elviri L, Zanello PP, Giovati L, Arruda DC, Munoz JE, Mortara RA, Morace G, Borghi E, Galati S, Marin O, Casoli C, Pilotti E, Ronzi P, Travassos LR, Magliani W, Conti S (2016) A naturally occurring antibody fragment neutralizes infectivity of diverse infectious agents. Sci Rep 6:35018PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Pradel G (2007) Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology 134(Pt.14):1911–1929PubMedGoogle Scholar
  85. 85.
    Quijano-Hernandez I, Dumonteil E (2011) Advances and challenges towards a vaccine against Chagas disease. Hum Vaccin 7(11):1184–1191PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Radtke AJ, Anderson CF, Riteau N, Rausch K, Scaria P, Kelnhofer ER, Howard RF, Sher A, Germain RN, Duffy P (2017) Adjuvant and carrier protein-dependent T-cell priming promotes a robust antibody response against the Plasmodium falciparum Pfs25 vaccine candidate. Sci Rep 7:40312PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Rahbari AH, Keshavarz H, Shojaee S, Mohebali M, Rezaeian M (2012) IgG avidity ELISA test for diagnosis of acute toxoplasmosis in humans. Korean J Parasitol 50(2):99–102PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Reis CF, Carneiro AP, Vieira CU, Fujimura PT, Morari EC, Silva SJ, Goulart LR, Ward LS (2013) An antibody-like peptide that recognizes malignancy among thyroid nodules. Cancer Lett 335(2):306–313PubMedCrossRefGoogle Scholar
  89. 89.
    Reiter-Owona I, Rehkaemper-Schaefer C, Arriens S, Rosenstock P, Pfarr K, Hoerauf A (2016) Specific K39 antibody response and its persistence after treatment in patients with imported leishmaniasis. Parasitol Res 115(2):761–769PubMedCrossRefGoogle Scholar
  90. 90.
    Rhaiem RB, Houimel M (2016) Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library. Acta Trop 159:11–19PubMedCrossRefGoogle Scholar
  91. 91.
    Ribeiro VS, Araujo TG, Gonzaga HT, Nascimento R, Goulart LR, Costa-Cruz JM (2013) Development of specific scFv antibodies to detect neurocysticercosis antigens and potential applications in immunodiagnosis. Immunol Lett 156(1–2):59–67CrossRefGoogle Scholar
  92. 92.
    Ribeiro VS, Manhani MN, Cardoso R, Vieira CU, Goulart LR, Costa-Cruz JM (2010) Selection of high affinity peptide ligands for detection of circulating antibodies in neurocysticercosis. Immunol Lett 129(2):94–99CrossRefGoogle Scholar
  93. 93.
    Rommereim LM, Bellini V, Fox BA, Petre G, Rak C, Touquet B, Aldebert D, Dubremetz JF, Cesbron-Delauw MF, Mercier C, Bzik DJ (2016) Phenotypes associated with knockouts of eight dense granule gene loci (GRA2-9) in virulent Toxoplasma gondii. PLoS One 11(7):e0159306PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rujeni N, Nausch N, Midzi N, Gwisai R, Mduluza T, Taylor DW, Mutapi F (2013) Soluble CD23 levels are inversely associated with atopy and parasite-specific IgE levels but not with polyclonal IgE levels in people exposed to helminth infection. Int Arch Allergy Immunol 161(4):333–341PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C, Pouvelle B, Gysin J, Lanzer M (1998) Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J 17(18):5418–5426PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Seed JR (1996) Protozoa: pathogenesis and defenses. In: Baron S (ed) Medical Microbiology. University of Texas Medical Branch at Galveston, GalvestonGoogle Scholar
  97. 97.
    Sepulveda J, Tremblay JM, DeGnore JP, Skelly PJ, Shoemaker CB (2010) Schistosoma mansoni host-exposed surface antigens characterized by sera and recombinant antibodies from schistosomiasis-resistant rats. Int J Parasitol 40(12):1407–1417PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Shiff C (2015) Accurate diagnostics for schistosomiasis: a new role for PCR? Reports in Parasitology 4:23–29CrossRefGoogle Scholar
  99. 99.
    Srivastava P, Dayama A, Mehrotra S, Sundar S (2011) Diagnosis of Visceral leishmaniasis. Trans R Soc Trop Med Hyg 105(1):1–6PubMedCrossRefGoogle Scholar
  100. 100.
    Srivastava S, Shankar P, Mishra J, Singh S (2016) Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors 9(1):277PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Stadecker MJ (1999) The regulatory role of the antigen-presenting cell in the development of hepatic immunopathology during infection with Schistosoma mansoni. Pathobiology 67(5–6):269–272PubMedCrossRefGoogle Scholar
  102. 102.
    Suzuki E, Tanaka AK, Toledo MS, Takahashi HK, Straus AH (2002) Role of beta-D-galactofuranose in Leishmania major macrophage invasion. Infect Immun 70(12):6592–6596PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Talaat KR, Ellis RD, Hurd J, Hentrich A, Gabriel E, Hynes NA, Rausch KM, Zhu D, Muratova O, Herrera R, Anderson C, Jones D, Aebig J, Brockley S, MacDonald NJ, Wang X, Fay MP, Healy SA, Durbin AP, Narum DL, Wu Y, Duffy PE (2016) Safety and immunogenicity of Pfs25-EPA/Alhydrogel(R), a transmission blocking vaccine against Plasmodium falciparum: an open label study in malaria naive adults. PLoS One 11(10):e0163144PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Talisuna AO, Bloland P, D’Alessandro U (2004) History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev 17(1):235–254PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Tendler M, Almeida M, Simpson A (2015) Development of the Brazilian anti schistosomiasis vaccine based on the recombinant fatty acid binding protein Sm14 plus GLA-SE adjuvant. Front Immunol 6:218PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Tian Z, Wang XY, Zhou YF, Feng QM, Zhang SJ, Yin TQ, Xu SR, Xia YD, Xu J, Jin J, Wang SP (2013) Schistosoma japonicum scFv-IL18 fusion DNA ameliorates hepatic fibrosis in schistosomiasis-infected mice via improving local concentration of IL-18 in liver. Exp Parasitol 134(4):447–454PubMedCrossRefGoogle Scholar
  107. 107.
    Tonelli RR, Giordano RJ, Barbu EM, Torrecilhas AC, Kobayashi GS, Langley RR, Arap W, Pasqualini R, Colli W, Alves MJ (2010) Role of the gp85/trans-sialidases in Trypanosoma cruzi tissue tropism: preferential binding of a conserved peptide motif to the vasculature in vivo. PLoS Negl Trop Dis 4(11):e864PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Varatharajalu A, Rao KV (2016) Strongyloides stercoralis: current perspectives. Reports in Parasitology 5:23–33CrossRefGoogle Scholar
  109. 109.
    Verastegui M, Gilman RH, Gonzales A, Garcia HH, Gavidia C, Falcon N, Bernal T, Arana Y, Tsang VC, Cysticercosis Working Group in Peru (2002) Taenia solium oncosphere antigens induce immunity in pigs against experimental cysticercosis. Vet Parasitol 108(1):49–62PubMedCrossRefGoogle Scholar
  110. 110.
    Vielma JR, Urdaneta-Romero H, Villarreal JC, Paz LA, Gutiérrez LV, Mora M, Chacín-Bonilla L (2014) Neurocysticercosis: clinical aspects, immunopathology, diagnosis, treatment and vaccine development. Epidemiology 4:156Google Scholar
  111. 111.
    Watanabe Costa R, da Silveira JF, Bahia D (2016) Interactions between Trypanosoma cruzi secreted proteins and host cell signaling pathways. Front Microbiol 7:388PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    White AC Jr (1997) Neurocysticercosis: a major cause of neurological disease worldwide. Clin Infect Dis 24(2):101–113; quiz 114–105Google Scholar
  113. 113.
    WHO (2011) Report of the WHO expert consultation on foodborne trematode infections and Taeniasis/Cysticercosis. World Health Organization, GenevaGoogle Scholar
  114. 114.
    WHO (2013) Chagas disease (American trypanosomiasis). Fact sheet no. 340. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  115. 115.
    Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH (2007) A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 77(6 Suppl):119–127PubMedGoogle Scholar
  116. 116.
    Yazdanbakhsh M, van den Biggelaar A, Maizels RM (2001) Th2 responses without atopy: immunoregulation in chronic helminth infections and reduced allergic disease. Trends Immunol 22(7):372–377PubMedCrossRefGoogle Scholar
  117. 117.
    Zambrano-Villa S, Rosales-Borjas D, Carrero JC, Ortiz-Ortiz L (2002) How protozoan parasites evade the immune response. Trends Parasitol 18(6):272–278PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Luiz R. Goulart
    • 1
    • 2
    Email author
  • Vanessa da S. Ribeiro
    • 3
  • Julia M. Costa-Cruz
    • 4
  1. 1.Laboratory of Nanobiotechnology, Institute of Genetics and BiochemistryFederal University of UberlandiaUberlandiaBrazil
  2. 2.Department of Medical Microbiology and ImmunologyUniversity of California-Davis, Genome and Biomedical Sciences FacilityDavisUSA
  3. 3.Federal University of GoiasCatalãoBrazil
  4. 4.Laboratory of Parasitology, Institute of Biomedical SciencesFederal University of UberlandiaUberlandiaBrazil

Personalised recommendations