Advertisement

Naïve Human Antibody Libraries for Infectious Diseases

  • Soo Khim Chan
  • Anizah Rahumatullah
  • Jing Yi Lai
  • Theam Soon LimEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1053)

Abstract

Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.

Keywords

Naïve antibody library Infectious diseases Monoclonal antibodies Phage display 

Notes

Acknowledgments

The authors would like to acknowledge the support from the Malaysian Ministry of Higher Education through the Higher Institution Centre of Excellence (HICoE) Grant (Grant No. 311/CIPPM/4401005). SKC would like to acknowledge support from USM Fellowship.

References

  1. 1.
    Janeway CA, Travers P, Walport M, Shlomchik MJ (1997) Immunobiology: the immune system in health and disease, vol 1. Current Biology SingaporeGoogle Scholar
  2. 2.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) The generation of antibody diversityGoogle Scholar
  3. 3.
    Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001a) B-cell activation by armed helper T cellsGoogle Scholar
  4. 4.
    Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001b) The generation of diversity in immunoglobulinsGoogle Scholar
  5. 5.
    Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001c) Principles of innate and adaptive immunityGoogle Scholar
  6. 6.
    Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826PubMedCrossRefGoogle Scholar
  7. 7.
    Maddaly R, Pai G, Balaji S, Sivaramakrishnan P, Srinivasan L, Sunder SS, Paul SF (2010) Receptors and signaling mechanisms for B-lymphocyte activation, proliferation and differentiation--insights from both in vivo and in vitro approaches. FEBS Letters 584(24):4883–4894Google Scholar
  8. 8.
    Fulcher D, Basten A (1997) B cell life span: a review. Immunol Cell Biol 75(5):446–455PubMedCrossRefGoogle Scholar
  9. 9.
    Rolink A, Melchers F (1993) Generation and regeneration of cells of the B-lymphocyte lineage. Curr Opin Immunol 5(2):207–217PubMedCrossRefGoogle Scholar
  10. 10.
    Raff M, Alberts B, Lewis J, Johnson A, Roberts K (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  11. 11.
    DeFranco AL (2001) B lymphocytes: receptors. In: eLS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0000914.pub3
  12. 12.
    Melchers F, Rolink A (1999) B-lymphocyte development and biology. Fundamental immunology 183Google Scholar
  13. 13.
    LeBien TW, Tedder TF (2008) B lymphocytes: how they develop and function. Blood 112(5):1570–1580. https://doi.org/10.1182/blood-2008-02-078071 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Melchers F (2015) Checkpoints that control B cell development. J Clin Invest 125(6):2203–2210PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302(5909):575–581PubMedCrossRefGoogle Scholar
  16. 16.
    Taussig M (1988) Molecular genetics of immunoglobulins. Immunology 64(Suppl 1):7PubMedCentralGoogle Scholar
  17. 17.
    Mathonet P, Ullman CG (2013) The application of next generation sequencing to the understanding of antibody repertoires. Front Immunol 4(265.10):3389Google Scholar
  18. 18.
    Luning Prak ET, Monestier M, Eisenberg RA (2011) B cell receptor editing in tolerance and autoimmunity. Ann N Y Acad Sci 1217(1):96–121PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal V (D) J recombination. Cell 109(2):S45–S55PubMedCrossRefGoogle Scholar
  20. 20.
    Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68(5):869–877PubMedCrossRefGoogle Scholar
  21. 21.
    Shinkai Y, Lam K-P, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM, Alt FW (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V (D) J rearrangement. Cell 68(5):855–867PubMedCrossRefGoogle Scholar
  22. 22.
    Hwang JK, Alt FW, Yeap L-S (2015) Related mechanisms of antibody somatic hypermutation and class switch recombination. Microbiol Spectr 3(1):MDNA3-0037-2014PubMedGoogle Scholar
  23. 23.
    Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22PubMedCrossRefGoogle Scholar
  24. 24.
    Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD (2004) The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev 18(1):1–11PubMedCrossRefGoogle Scholar
  25. 25.
    Jacob J, Kelsoe G, Rajewsky K, Weiss U (1991) Intraclonal generation of antibody mutants in germinal centres. Nature 354(6352):389–392PubMedCrossRefGoogle Scholar
  26. 26.
    Weigert MG, Cesari IM, Yonkovich SJ, Cohn M (1970) Variability in the lambda light chain sequences of mouse antibody. Nature 228:1045–1047PubMedCrossRefGoogle Scholar
  27. 27.
    Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102(5):553–563PubMedCrossRefGoogle Scholar
  28. 28.
    Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Lagelouse R, Gennery A (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102(5):565–575PubMedCrossRefGoogle Scholar
  29. 29.
    Chaudhuri J, Khuong C, Alt FW (2004) Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430(7003):992–998PubMedCrossRefGoogle Scholar
  30. 30.
    Muramatsu M, Sankaranand V, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T (1999) Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274(26):18470–18476PubMedCrossRefGoogle Scholar
  31. 31.
    Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K (2009) Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol 28:243–273CrossRefGoogle Scholar
  32. 32.
    Stavnezer J, Guikema JE, Schrader CE (2008) Mechanism and regulation of class switch recombination. Annu Rev Immunol 26:261PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30:429–457PubMedCrossRefGoogle Scholar
  34. 34.
    Harris RS, Kong Q, Maizels N (1999) Somatic hypermutation and the three R’s: repair, replication and recombination. Mutat Res Rev Mutat Res 436(2):157–178CrossRefGoogle Scholar
  35. 35.
    Rada C, Milstein C (2001) The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially. EMBO J 20(16):4570–4576PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK (2004) Activation-induced Cytidine Deaminase Deaminates 5-Methylcytosine in DNA and is expressed in pluripotent tissues IMPLICATIONS FOR EPIGENETIC REPROGRAMMING. J Biol Chem 279(50):52353–52360PubMedCrossRefGoogle Scholar
  37. 37.
    Keim C, Kazadi D, Rothschild G, Basu U (2013) Regulation of AID, the B-cell genome mutator. Genes Dev 27(1):1–17PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rajewsky K, Forster I, Cumano A (1987) Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 238(4830):1088–1094PubMedCrossRefGoogle Scholar
  39. 39.
    Rogozin IB, Diaz M (2004) Cutting edge: DGYW/WRCH is a better predictor of mutability at G: C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J Immunol 172(6):3382–3384PubMedCrossRefGoogle Scholar
  40. 40.
    Pham P, Bransteitter R, Petruska J, Goodman MF (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424(6944):103–107PubMedCrossRefGoogle Scholar
  41. 41.
    Yu K, Huang F-T, Lieber MR (2004) DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J Biol Chem 279(8):6496–6500PubMedCrossRefGoogle Scholar
  42. 42.
    Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS (2002) Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 12(20):1748–1755PubMedCrossRefGoogle Scholar
  43. 43.
    Casadevall A, Dadachova E, Pirofski L-a (2004) Passive antibody therapy for infectious diseases. Nat Rev Microbiol 2(9):695–703PubMedCrossRefGoogle Scholar
  44. 44.
    Plotkin SA (2008) Correlates of vaccine-induced immunity. Clin Infect Dis 47(3):401–409PubMedCrossRefGoogle Scholar
  45. 45.
    Pulendran B, Ahmed R (2006) Translating innate immunity into immunological memory: implications for vaccine development. Cell 124(4):849–863PubMedCrossRefGoogle Scholar
  46. 46.
    Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A (2007) Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol 94:157–214PubMedCrossRefGoogle Scholar
  47. 47.
    Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J (2014) Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 122:1PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Xu Z, Zan H, Pone EJ, Mai T, Casali P (2012) Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 12(7):517–531PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Honjo T (2008) A memoir of AID, which engraves antibody memory on DNA. Nat Immunol 9(4):335–337PubMedCrossRefGoogle Scholar
  50. 50.
    Wagner K, Stickings P, White J, Neal S, Crowcroft N, Sesardic D, Efstratiou A (2009) A review of the international issues surrounding the availability and demand for diphtheria antitoxin for therapeutic use. Vaccine 28(1):14–20PubMedCrossRefGoogle Scholar
  51. 51.
    Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRefGoogle Scholar
  52. 52.
    Tjandra JL, Ramadi L, McKenzie IF (1990) Development of human anti-murine antibody (HAMA) response in patients. Immunol Cell Biol 68(6):367–376PubMedCrossRefGoogle Scholar
  53. 53.
    Bradbury AR, Sidhu S, Dübel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29(3):245–254PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Edwards BM, He M (2012) Evolution of antibodies in vitro by ribosome display. In: Antibody engineering: methods and protocols, 2nd edn. Humana Press, Totowa, pp 281–292CrossRefGoogle Scholar
  55. 55.
    Benatuil L, Perez JM, Belk J, Hsieh C-M (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23(4):155–159PubMedCrossRefGoogle Scholar
  56. 56.
    Boder ET, Raeeszadeh-Sarmazdeh M, Price JV (2012) Engineering antibodies by yeast display. Arch Biochem Biophys 526(2):99–106PubMedCrossRefGoogle Scholar
  57. 57.
    Rockberg J, Löfblom J, Hjelm B, Uhlén M, Ståhl S (2008) Epitope mapping of antibodies using bacterial surface display. Nat Methods 5(12):1039–1045PubMedCrossRefGoogle Scholar
  58. 58.
    Spatola BN, Murray JA, Kagnoff M, Kaukinen K, Daugherty PS (2012) Antibody repertoire profiling using bacterial display identifies reactivity signatures of celiac disease. Anal Chem 85(2):1215–1222PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Chin CF, Ler LW, Choong YS, Ong EBB, Ismail A, Tye GJ, Lim TS (2016) Application of streptavidin mass spectrometric immunoassay tips for immunoaffinity based antibody phage display panning. J Microbiol Methods 120:6–14PubMedCrossRefGoogle Scholar
  60. 60.
    Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. In: MAbs, vol 7. Taylor & Francis, pp 1177–1194Google Scholar
  61. 61.
    Sidhu SS, Geyer CR (2015) Phage display in biotechnology and drug discovery. CRC Press, Boca RatonGoogle Scholar
  62. 62.
    Sumida T, Yanagawa H, Doi N (2012) In vitro selection of fab fragments by mRNA display and gene-linking emulsion PCR. J Nucleic Acids 2012:371379PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Xiao L, Hung K-C, Takahashi TT, Joo K-I, Lim M, Roberts RW, Wang P (2013) Antibody-mimetic ligand selected by mRNA display targets DC-SIGN for dendritic cell-directed antigen delivery. ACS Chem Biol 8(5):967–977PubMedCrossRefGoogle Scholar
  64. 64.
    Jakobovits A, Amado RG, Yang X, Roskos L, Schwab G (2007) From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol 25(10):1134–1143PubMedCrossRefGoogle Scholar
  65. 65.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554PubMedCrossRefGoogle Scholar
  66. 66.
    Lim TS (2009) Parameters affecting phage display library design for improved generation of human antibodies. Freie Universität Berlin Berlin, BerlinGoogle Scholar
  67. 67.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317PubMedCrossRefGoogle Scholar
  68. 68.
    Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104(2):147–153PubMedCrossRefGoogle Scholar
  69. 69.
    Tikunova N, Morozova V (2009) Phage display on the base of filamentous bacteriophages: application for recombinant antibodies selection. Acta Nat 1(3):20Google Scholar
  70. 70.
    Bazan J, Całkosiński I, Gamian A (2012) Phage display—a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccin Immunother 8(12):1817–1828PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hust M, Dübel S (2005) Phage display vectors for the in vitro generation of human antibody fragments. In: Immunochemical protocols. Springer, pp 71–96Google Scholar
  72. 72.
    Vodnik M, Zager U, Strukelj B, Lunder M (2011) Phage display: selecting straws instead of a needle from a haystack. Molecules 16(1):790–817PubMedCrossRefGoogle Scholar
  73. 73.
    Kwaśnikowski P, Kristensen P, Markiewicz WT (2005) Multivalent display system on filamentous bacteriophage pVII minor coat protein. J Immunol Methods 307(1):135–143PubMedCrossRefGoogle Scholar
  74. 74.
    Løset GÅ, Roos N, Bogen B, Sandlie I (2011b) Expanding the versatility of phage display II: improved affinity selection of folded domains on protein VII and IX of the filamentous phage. PLoS One 6(2):e17433PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Løset GÅ, Bogen B, Sandlie I (2011a) Expanding the versatility of phage display I: efficient display of peptide-tags on protein VII of the filamentous phage. PLoS One 6(2):e14702PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kramer RA, Cox F, van der Horst M, van den Oudenrijn S, Bia J, Logtenberg T, de Kruif J (2003) A novel helper phage that improves phage display selection efficiency by preventing the amplification of phages without recombinant protein. Nucleic Acids Res 31(11):e59–e59PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Shi B, Wang H, Guo S, Xu Y, Li Z, Gu J (2007) Protein III-based single-chain antibody phage display using bacterial cells bearing an additional genome of a gene-III-lacking helper phage. BioTechniques 42(6):760PubMedCrossRefGoogle Scholar
  78. 78.
    Chasteen L, Ayriss J, Pavlik P, Bradbury A (2006) Eliminating helper phage from phage display. Nucleic Acids Res 34(21):e145–e145Google Scholar
  79. 79.
    Carmen S, Jermutus L (2002) Concepts in antibody phage display. Brief Funct Genomic Proteomic 1(2):189–203PubMedCrossRefGoogle Scholar
  80. 80.
    Walter G, Konthur Z, Lehrach H (2001) High-throughput screening of surface displayed gene products. Comb Chem High Throughput Screen 4(2):193–205PubMedCrossRefGoogle Scholar
  81. 81.
    Noppe W, Plieva F, Galaev IY, Pottel H, Deckmyn H, Mattiasson B (2009) Chromato-panning: an efficient new mode of identifying suitable ligands from phage display libraries. BMC Biotechnol 9(1):21PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Skerra A, Pluckthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240(4855):1038PubMedCrossRefGoogle Scholar
  83. 83.
    Mazor Y, Van Blarcom T, Iverson BL, Georgiou G (2008) E-clonal antibodies: selection of full-length IgG antibodies using bacterial periplasmic display. Nat Protoc 3(11):1766–1777PubMedCrossRefGoogle Scholar
  84. 84.
    Dübel S, Reichert JM (2014) Handbook of therapeutic antibodies, vol 1. Wiley, WeinheimGoogle Scholar
  85. 85.
    Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21(11):484–490PubMedCrossRefGoogle Scholar
  86. 86.
    Kügler J, Wilke S, Meier D, Tomszak F, Frenzel A, Schirrmann T, Dübel S, Garritsen H, Hock B, Toleikis L (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15(1):10PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Schofield DJ, Pope AR, Clementel V, Buckell J, Chapple SD, Clarke KF, Conquer JS, Crofts AM, Crowther SR, Dyson MR (2007) Application of phage display to high throughput antibody generation and characterization. Genome Biol 8(11):R254PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hust M, Frenzel A, Meyer T, Schirrmann T, Dübel S (2012) Construction of human naive antibody gene libraries. In: Antibody engineering: methods and protocols, 2nd edn. Humana Press, Totowa, pp 85–107CrossRefGoogle Scholar
  89. 89.
    Tiller T, Schuster I, Deppe D, Siegers K, Strohner R, Herrmann T, Berenguer M, Poujol D, Stehle J, Stark Y (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. In: MAbs, vol 3. Taylor & Francis, pp 445–470Google Scholar
  90. 90.
    Bradbury AR, Marks JD (2004) Antibodies from phage antibody libraries. J Immunol Methods 290(1):29–49PubMedCrossRefGoogle Scholar
  91. 91.
    Sotelo PH, Collazo N, Zuñiga R, Gutiérrez-González M, Catalán D, Ribeiro CH, Aguillón JC, Molina MC (2012) An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification. In: MAbs, vol 4. Taylor & Francis, pp 542–550Google Scholar
  92. 92.
    Steinwand M, Droste P, Frenzel A, Hust M, Dübel S, Schirrmann T (2014) The influence of antibody fragment format on phage display based affinity maturation of IgG. In: MAbs, vol 1. Taylor & Francis, pp 204–218Google Scholar
  93. 93.
    Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K (2011) High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16(5):3675–3700PubMedCrossRefGoogle Scholar
  94. 94.
    Lim BN, Chin CF, Choong YS, Ismail A, Lim TS (2016) Generation of a naïve human single chain variable fragment (scFv) library for the identification of monoclonal scFv against Salmonella Typhi Hemolysin E antigen. Toxicon 117:94–101PubMedCrossRefGoogle Scholar
  95. 95.
    Miersch S, Sidhu S (2012) Synthetic antibodies: concepts, potential and practical considerations. Methods 57(4):486–498PubMedCrossRefGoogle Scholar
  96. 96.
    Moon SA, Ki MK, Lee S, Hong M-L, Kim M, Kim S, Chung J, Rhee SG, Shim H (2011) Antibodies against non-immunizing antigens derived from a large immune scFv library. Mol Cells 31(6):509–513PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Frenzel A, Kügler J, Wilke S, Schirrmann T, Hust M (2014) Construction of human antibody gene libraries and selection of antibodies by phage display. Human monoclonal antibodies: methods and protocols:215–243Google Scholar
  98. 98.
    Hutchings C, Carmen S, Lennard S (2001) Generation of naive human antibody libraries. In: Antibody engineering. Springer, pp 93–108Google Scholar
  99. 99.
    Sommavilla R, Lovato V, Villa A, Sgier D, Neri D (2010) Design and construction of a naive mouse antibody phage display library. J Immunol Methods 353(1):31–43PubMedCrossRefGoogle Scholar
  100. 100.
    Zhu Z, Dimitrov DS (2009) Construction of a large naive human phage-displayed fab library through one-step cloning, Therapeutic Antibodies: Methods and Protocols, pp 129–142Google Scholar
  101. 101.
    Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12(1):433–455PubMedCrossRefGoogle Scholar
  102. 102.
    de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruı̈ne AP, Arends J-W, Hoogenboom HR (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274(26):18218–18230PubMedCrossRefGoogle Scholar
  103. 103.
    Aughan T, Willams A, Prichard K (2000) Human antibodies with sub2 nanomolar affinities isolated from a large non2immunized phage display. Nat Biotechnol 14:1149Google Scholar
  104. 104.
    Ling MM (2003) Large antibody display libraries for isolation of high-affinity antibodies. Comb Chem High Throughput Screen 6(5):421–432PubMedCrossRefGoogle Scholar
  105. 105.
    Little M (2009) Recombinant antibodies for immunotherapy. Cambridge University Press, New YorkCrossRefGoogle Scholar
  106. 106.
    Miertus S, Fassina G (2005) Combinatorial chemistry and technologies: methods and applications. CRC Press, Boca RatonGoogle Scholar
  107. 107.
    Beerli RR, Rader C (2010) Mining human antibody repertoires. MAbs 2(4):365–378PubMedCrossRefGoogle Scholar
  108. 108.
    Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization: human antibodies from V-gene libraries displayed on phage. J Mol Biol 222(3):581–597PubMedCrossRefGoogle Scholar
  109. 109.
    Ademokun A, YC W, Martin V, Mitra R, Sack U, Baxendale H, Kipling D, Dunn-Walters DK (2011) Vaccination-induced changes in human B-cell repertoire and pneumococcal IgM and IgA antibody at different ages. Aging Cell 10(6):922–930PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Galson JD, Pollard AJ, Trück J, Kelly DF (2014) Studying the antibody repertoire after vaccination: practical applications. Trends Immunol 35(7):319–331PubMedCrossRefGoogle Scholar
  111. 111.
    Brockmann E-C (2010) Evolution of bioaffinity reagents by phage displayGoogle Scholar
  112. 112.
    Galson JD, Trück J, Fowler A, Clutterbuck EA, Münz M, Cerundolo V, Reinhard C, van der Most R, Pollard AJ, Lunter G (2015) Analysis of B cell repertoire dynamics following hepatitis B vaccination in humans, and enrichment of vaccine-specific antibody sequences. EBioMedicine 2(12):2070–2079PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Dunn-Walters DK, Ademokun AA (2010) B cell repertoire and ageing. Curr Opin Immunol 22(4):514–520PubMedCrossRefGoogle Scholar
  114. 114.
    Weksler ME (2000) Changes in the B-cell repertoire with age. Vaccine 18(16):1624–1628PubMedCrossRefGoogle Scholar
  115. 115.
    Glanville J, Kuo TC, von Büdingen H-C, Guey L, Berka J, Sundar PD, Huerta G, Mehta GR, Oksenberg JR, Hauser SL (2011) Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation. Proc Natl Acad Sci 108(50):20066–20071PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Shih H-Y, Krangel MS (2013) Chromatin architecture, CCCTC-binding factor, and V (D) J recombination: managing long-distance relationships at antigen receptor loci. J Immunol 190(10):4915–4921PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Fuss IJ, Kanof ME, Smith PD, Zola H (2009) Isolation of whole mononuclear cells from peripheral blood and cord blood. Wiley Online LibraryGoogle Scholar
  118. 118.
    Sblattero D, Bradbury A (1998) A definitive set of oligonucleotide primers for amplifying human V regions. Immunotechnology 3(4):271–278PubMedCrossRefGoogle Scholar
  119. 119.
    Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G (1992) The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol 227(3):776–798PubMedCrossRefGoogle Scholar
  120. 120.
    Schwimmer LJ, Huang B, Giang H, Cotter RL, Chemla-Vogel DS, Dy FV, Tam EM, Zhang F, Toy P, Bohmann DJ (2013) Discovery of diverse and functional antibodies from large human repertoire antibody libraries. J Immunol Methods 391(1):60–71PubMedCrossRefGoogle Scholar
  121. 121.
    Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D, Schirrmann T, Dubel S (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152(4):159–170PubMedCrossRefGoogle Scholar
  122. 122.
    Lee C-H, Lee Y-C, Liang M-H, Leu S-J, Lin L-T, Chiang J-R, Yang Y-Y (2016) Antibodies against venom of the snake Deinagkistrodon acutus. Appl Environ Microbiol 82(1):71–80PubMedCrossRefGoogle Scholar
  123. 123.
    Lin A, Jimenez J, Derr J, Vera P, Manapat ML, Esvelt KM, Villanueva L, Liu DR, Chen IA (2011) Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model. PLoS One 6(5):e19991PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Høydahl LS, Nilssen NR, Gunnarsen KS, du Pré MF, Iversen R, Roos N, Chen X, Michaelsen TE, Sollid LM, Sandlie I (2016) Multivalent pIX phage display selects for distinct and improved antibody properties. Sci Rep 6:39066PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Phipps ML, Lillo AM, Shou Y, Schmidt EN, Paavola CD, Naranjo L, Bemdich S, Swanson BI, Bradbury AR, Martinez JS (2016) Beyond helper phage: using “helper cells” to select peptide affinity ligands. PLoS One 11(9):e0160940PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Nian S, Wu T, Ye Y, Wang X, Xu W, Yuan Q (2016) Development and identification of fully human scFv-Fcs against Staphylococcus aureus. BMC Immunol 17(1):1CrossRefGoogle Scholar
  127. 127.
    Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14(3):309–314PubMedCrossRefGoogle Scholar
  128. 128.
    Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2009) Isolation of monoclonal antibody fragments from phage display libraries. In: Bacteriophages: methods and protocols, Volume 2 Molecular and Applied Aspects: 341–364. Humana Press, New YorkGoogle Scholar
  129. 129.
    Butler CD (2012) Infectious disease emergence and global change: thinking systemically in a shrinking world. Infect Dis Poverty 1(1):1CrossRefGoogle Scholar
  130. 130.
    Morse SS (2001) Factors in the emergence of infectious diseases. In: Plagues and politics. Springer, pp 8–26Google Scholar
  131. 131.
    Hey A (2015) History and practice: antibodies in infectious diseases. Microbiol Spectr 3(2)Google Scholar
  132. 132.
    Casadevall A, Pirofski L-A (2015) The Ebola epidemic crystallizes the potential of passive antibody therapy for infectious diseases. PLoS Pathog 11(4):e1004717–e1004717PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Lim BN, Tye GJ, Choong YS, Ong EBB, Ismail A, Lim TS (2014) Principles and application of antibody libraries for infectious diseases. Biotechnol Lett 36(12):2381–2392PubMedCrossRefGoogle Scholar
  134. 134.
    Casadevall A (1996) Antibody-based therapies for emerging infectious diseases. Emerg Infect Dis 2(3):200PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Keller MA, Stiehm ER (2000) Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 13(4):602–614PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Ong EBB, Anthony AA, Ismail A, Ismail A, Lim TS (2013) Cloning, expression, and purification of the hemolysin/cytolysin (HlyE antigen) from Salmonella enterica serovar Typhi: potential application for immunoassay development. Diagn Microbiol Infect Dis 77(1):87–89PubMedCrossRefGoogle Scholar
  137. 137.
    Borio L, Frank D, Mani V, Chiriboga C, Pollanen M, Ripple M, Ali S, DiAngelo C, Lee J, Arden J (2001) Death due to bioterrorism-related inhalational anthrax: report of 2 patients. JAMA 286(20):2554–2559PubMedCrossRefGoogle Scholar
  138. 138.
    Bush LM, Abrams BH, Beall A, Johnson CC (2001) Index case of fatal inhalational anthrax due to bioterrorism in the United States. N Engl J Med 345(22):1607–1610PubMedCrossRefGoogle Scholar
  139. 139.
    Zhou B, Wirsching P, Janda KD (2002) Human antibodies against spores of the genus Bacillus: a model study for detection of and protection against anthrax and the bioterrorist threat. Proc Natl Acad Sci 99(8):5241–5246PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Cirino NM, Sblattero D, Allen D, Peterson SR, Marks JD, Jackson PJ, Bradbury A, Lehnert BE (1999) Disruption of anthrax toxin binding with the use of human antibodies and competitive inhibitors. Infect Immun 67(6):2957–2963PubMedPubMedCentralGoogle Scholar
  141. 141.
    Fuchs M, Kämpfer S, Helmsing S, Spallek R, Oehlmann W, Prilop W, Frank R, Dübel S, Singh M, Hust M (2014) Novel human recombinant antibodies against Mycobacterium tuberculosis antigen 85B. BMC Biotechnol 14(1):1CrossRefGoogle Scholar
  142. 142.
    Zaman K (2010) Tuberculosis: a global health problem. J Health Popul Nutr 28:111–113PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Close DW, Ferrara F, Dichosa AE, Kumar S, Daughton AR, Daligault HE, Reitenga KG, Velappan N, Sanchez TC, Iyer S (2013) Using phage display selected antibodies to dissect microbiomes for complete de novo genome sequencing of low abundance microbes. BMC Microbiol 13(1):1CrossRefGoogle Scholar
  144. 144.
    Chen H, Smith G, Li K, Wang J, Fan X, Rayner J, Vijaykrishna D, Zhang J, Zhang L, Guo C (2006) Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci U S A 103(8):2845–2850PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Lim AP, Chan CE, Wong SK, Chan AH, Ooi EE, Hanson BJ (2008) Neutralizing human monoclonal antibody against H5N1 influenza HA selected from a Fab-phage display library. Virol J 5(1):1CrossRefGoogle Scholar
  146. 146.
    Donà MG, Giorgi C, Accardi L (2007) Characterization of antibodies in single-chain format against the E7 oncoprotein of the human papillomavirus type 16 and their improvement by mutagenesis. BMC Cancer 7(1):1CrossRefGoogle Scholar
  147. 147.
    Rodríguez-Díaz J, Monedero V, Pérez-Martínez G, Buesa J (2004) Single-chain variable fragment (scFv) antibodies against rotavirus NSP4 enterotoxin generated by phage display. J Virol Methods 121(2):231–238PubMedCrossRefGoogle Scholar
  148. 148.
    van den Brink EN, ter Meulen J, Cox F, Jongeneelen MA, Thijsse A, Throsby M, Marissen WE, Rood PM, Bakker AB, Gelderblom HR (2005) Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J Virol 79(3):1635–1644PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, Cook S, Coutard B, Decroly E, de Lamballerie X, Gould EA (2010) Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antivir Res 87(2):125–148PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Lescar J, Luo D, Xu T, Sampath A, Lim SP, Canard B, Vasudevan SG (2008) Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. Antivir Res 80(2):94–101PubMedCrossRefGoogle Scholar
  151. 151.
    Moreland NJ, Tay MY, Lim E, Paradkar PN, Doan DN, Yau YH, Shochat SG, Vasudevan SG (2010) High affinity human antibody fragments to dengue virus non-structural protein 3. PLoS Negl Trop Dis 4(11):e881PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Zhao Y, Moreland NJ, Tay MY, Lee CC, Swaminathan K, Vasudevan SG (2014) Identification and molecular characterization of human antibody fragments specific for dengue NS5 protein. Virus Res 179:225–230PubMedCrossRefGoogle Scholar
  153. 153.
    Hu D, Hu S, Wan W, Xu M, Du R, Zhao W, Gao X, Liu J, Liu H, Hong J (2015) Effective optimization of antibody affinity by phage display integrated with high-throughput DNA synthesis and sequencing technologies. PLoS One 10(6):e0129125PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Kabir ME, Krishnaswamy S, Miyamoto M, Furuichi Y, Komiyama T (2009) An improved phage-display panning method to produce an HM-1 killer toxin anti-idiotypic antibody. BMC Biotechnol 9(1):1CrossRefGoogle Scholar
  155. 155.
    Kristensen P, Winter G (1998) Proteolytic selection for protein folding using filamentous bacteriophages. Fold Des 3(5):321–328PubMedCrossRefGoogle Scholar
  156. 156.
    Pansri P, Jaruseranee N, Rangnoi K, Kristensen P, Yamabhai M (2009) A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnol 9(1):6. https://doi.org/10.1186/1472-6750-9-6 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Zhu Z, Dimitrov AS, Bossart KN, Crameri G, Bishop KA, Choudhry V, Mungall BA, Feng Y-R, Choudhary A, Zhang M-Y (2006) Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J Virol 80(2):891–899PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Kim J, Sudbery P (2011) Candida albicans, a major human fungal pathogen. J Microbiol 49(2):171–177PubMedCrossRefGoogle Scholar
  159. 159.
    Martínez JP, Gil ML, López-Ribot JL, Chaffin WL (1998) Serologic response to cell wall mannoproteins and proteins of Candida albicans. Clin Microbiol Rev 11(1):121–141PubMedPubMedCentralGoogle Scholar
  160. 160.
    Haidaris CG, Malone J, Sherrill LA, Bliss JM, Gaspari AA, Insel RA, Sullivan MA (2001) Recombinant human antibody single chain variable fragments reactive with Candida albicans surface antigens. J Immunol Methods 257(1):185–202PubMedCrossRefGoogle Scholar
  161. 161.
    Ogunseitan O (2011) Green health: an A-to-Z guide, vol 9. Sage, Thousand OaksCrossRefGoogle Scholar
  162. 162.
    Kirsch MI, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall H-J, Hust M, Dübel S (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8(1):66PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Moghaddam A, Løbersli I, Gebhardt K, Braunagel M, Marvik OJ (2001) Selection and characterisation of recombinant single-chain antibodies to the hapten Aflatoxin-B1 from naive recombinant antibody libraries. J Immunol Methods 254(1):169–181PubMedCrossRefGoogle Scholar
  164. 164.
    Schütte M, Thullier P, Pelat T, Wezler X, Rosenstock P, Hinz D, Kirsch MI, Hasenberg M, Frank R, Schirrmann T (2009) Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS One 4(8):e6625PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Leow CH, Jones M, Cheng Q, Mahler S, McCarthy J (2014) Production and characterization of specific monoclonal antibodies binding the Plasmodium falciparum diagnostic biomarker, histidine-rich protein 2. Malar J 13(1):1CrossRefGoogle Scholar
  166. 166.
    Breedveld F (2000) Therapeutic monoclonal antibodies. Lancet 355(9205):735–740PubMedCrossRefGoogle Scholar
  167. 167.
    Schirrmann T, Meyer T, Schütte M, Frenzel A, Hust M (2011) Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 16(1):412–426PubMedCrossRefGoogle Scholar
  168. 168.
    Nissim A, Chernajovsky Y (2008) Historical development of monoclonal antibody therapeutics. In: Therapeutic antibodies. Springer, Berlin, pp 3–18CrossRefGoogle Scholar
  169. 169.
    Weimer BC, Walsh M, Beer C, Koka R, Wang X (2001) Solid-phase capture of proteins, spores, and bacteria. Appl Environ Microbiol 67(3):1300–1307PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Yu H (1998) Comparative studies of magnetic particle-based solid phase fluorogenic and electrochemiluminescent immunoassay. J Immunol Methods 218(1):1–8PubMedCrossRefGoogle Scholar
  171. 171.
    Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Dimmock NJ (2012) Neutralization of animal viruses, vol 183. Springer, BerlinGoogle Scholar
  173. 173.
    Klasse P, Sattentau Q (2002) Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol 83(9):2091–2108PubMedCrossRefGoogle Scholar
  174. 174.
    Suomalainen M, Greber UF (2013) Uncoating of non-enveloped viruses. Curr Opin Virol 3(1):27–33PubMedCrossRefGoogle Scholar
  175. 175.
    Pierson TC, Kielian M (2013) Flaviviruses: braking the entering. Curr Opin Virol 3(1):3–12PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Plattet P, Plemper RK (2013) Envelope protein dynamics in paramyxovirus entry. MBio 4(4):e00413–e00413PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Sun X, Whittaker GR (2006) Entry of influenza virus. In: Viral entry into host cells. Springer, New York, pp 72–82CrossRefGoogle Scholar
  178. 178.
    Friesen RH, Koudstaal W, Koldijk MH, Weverling GJ, Brakenhoff JP, Lenting PJ, Stittelaar KJ, Osterhaus AD, Kompier R, Goudsmit J (2010) New class of monoclonal antibodies against severe influenza: prophylactic and therapeutic efficacy in ferrets. PLoS One 5(2):e9106PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Teissier E, Penin F, Pécheur E-I (2010) Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules 16(1):221–250PubMedCrossRefGoogle Scholar
  180. 180.
    Roehrig JT, Bolin RA, Kelly RG (1998) Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246(2):317–328PubMedCrossRefGoogle Scholar
  181. 181.
    Fibriansah G, Tan JL, Smith SA, De Alwis R, Ng T-S, Kostyuchenko VA, Jadi RS, Kukkaro P, de Silva AM, Crowe JE (2015) A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nat Commun 6:6341PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Zuo Z, Liew OW, Chen G, Chong PCJ, Lee SH, Chen K, Jiang H, Puah CM, Zhu W (2009) Mechanism of NS2B-mediated activation of NS3pro in dengue virus: molecular dynamics simulations and bioassays. J Virol 83(2):1060–1070PubMedCrossRefGoogle Scholar
  183. 183.
    Liu L, Tian Y, Gao N, Chen Z, Zhang H, An J (2010) Application of antibodies against nonstructural protein 2B of dengue serotype 2 virus induced by DNA immunisation or recombinant protein NS 2B immunisation in BALB/c mice. J Virol Methods 163(1):10–16PubMedCrossRefGoogle Scholar
  184. 184.
    Qiu X, Audet J, Wong G, Pillet S, Bello A, Cabral T, Strong JE, Plummer F, Corbett CR, Alimonti JB (2012) Successful treatment of Ebola virus–infected cynomolgus macaques with monoclonal antibodies. Sci Transl Med 4(138):138ra181–138ra181CrossRefGoogle Scholar
  185. 185.
    Pettitt J, Zeitlin L, Kim DH, Working C, Johnson JC, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK (2013) Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med 5(199):199ra113–199ra113PubMedCrossRefGoogle Scholar
  186. 186.
    Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M, Wollen S, Ploquin A, Doria-Rose NA, Staupe RP, Bailey M (2016) Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351(6279):1339–1342PubMedCrossRefGoogle Scholar
  188. 188.
    Davidson E, Bryan C, Fong RH, Barnes T, Pfaff JM, Mabila M, Rucker JB, Doranz BJ (2015) Mechanism of binding to Ebola virus glycoprotein by the ZMapp, ZMAb, and MB-003 cocktail antibodies. J Virol 89(21):10982–10992PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454(7201):177–182PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Lee JE, Saphire EO (2009) Neutralizing ebolavirus: structural insights into the envelope glycoprotein and antibodies targeted against it. Curr Opin Struct Biol 19(4):408–417PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Murin CD, Fusco ML, Bornholdt ZA, Qiu X, Olinger GG, Zeitlin L, Kobinger GP, Ward AB, Saphire EO (2014) Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc Natl Acad Sci 111(48):17182–17187PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Wilson JA, Hevey M, Bakken R, Guest S, Bray M, Schmaljohn AL, Hart MK (2000) Epitopes involved in antibody-mediated protection from Ebola virus. Science 287(5458):1664–1666PubMedCrossRefGoogle Scholar
  193. 193.
    Both L, Banyard AC, van Dolleweerd C, Wright E, Ma JK-C, Fooks AR (2013) Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine 31(12):1553–1559PubMedCrossRefGoogle Scholar
  194. 194.
    Goudsmit J, Marissen WE, Weldon WC, Niezgoda M, Hanlon CA, Rice AB, de Kruif J, Dietzschold B, Bakker AB, Rupprecht CE (2006) Comparison of an anti-rabies human monoclonal antibody combination with human polyclonal anti-rabies immune globulin. J Infect Dis 193(6):796–801PubMedCrossRefGoogle Scholar
  195. 195.
    Ter Meulen J, Van Den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, Cheung CY, Bakker AQ, Bogaards JA, Van Deventer E (2006) Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med 3(7):e237PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Armbruster C, Stiegler GM, Vcelar BA, Jäger W, Köller U, Jilch R, Ammann CG, Pruenster M, Stoiber H, Katinger HW (2004) Passive immunization with the anti-HIV-1 human monoclonal antibody (hMAb) 4E10 and the hMAb combination 4E10/2F5/2G12. J Antimicrob Chemother 54(5):915–920PubMedCrossRefGoogle Scholar
  197. 197.
    Sawada H, Iwasa S, Nishimura O, Kitano K (1995) Efficient production of anti-(hepatitis B virus) antibodies and their neutralizing activity in chimpanzees. Appl Microbiol Biotechnol 43(3):445–451PubMedCrossRefGoogle Scholar
  198. 198.
    Prabakaran M, Prabhu N, He F, Hongliang Q, Ho H-T, Qiang J, Goutama M, Kwang J (2009) Combination therapy using chimeric monoclonal antibodies protects mice from lethal H5N1 infection and prevents formation of escape mutants. PLoS One 4(5):e5672PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Zafir-Lavie I, Michaeli Y, Reiter Y (2007) Novel antibodies as anticancer agents. Oncogene 26(25):3714–3733PubMedCrossRefGoogle Scholar
  200. 200.
    Cerny T, Borisch B, Introna M, Johnson P, Rose AL (2002) Mechanism of action of rituximab. Anti-Cancer Drugs 13:S3–S10PubMedCrossRefGoogle Scholar
  201. 201.
    Chudasama V, Maruani A, Caddick S (2016) Recent advances in the construction of antibody-drug conjugates. Nat Chem 8(2):114–119PubMedCrossRefGoogle Scholar
  202. 202.
    Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Morisaki JH (2015) Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527(7578):323–328PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Soo Khim Chan
    • 1
  • Anizah Rahumatullah
    • 1
  • Jing Yi Lai
    • 1
  • Theam Soon Lim
    • 1
    • 2
    Email author
  1. 1.Institute for Research in Molecular MedicineUniversiti Sains MalaysiaMindenMalaysia
  2. 2.Analytical Biochemistry Research CentreUniversiti Sains MalaysiaMindenMalaysia

Personalised recommendations