Advertisement

The Inhibition of Prostaglandin Formation

  • Roger P. Smith
Chapter

Abstract

The primary therapeutic modality for patients with primary dysmenorrhea and heavy menstrual bleeding is the nonsteroidal anti-inflammatory drugs (NSAIDs). These agents act primarily to block the formation of the prostaglandins responsible for the symptoms. As noted in the previous chapter, the two prostaglandins responsible, PGE2 and PGF, are both made from arachidonic acid through the enzymatic action of cyclooxygenases. Found in two main isoforms, COX-1 and COX-2, the characteristics of these two enzymes allow for specific and effective inhibition of their function. Understanding how this occurs, and the differences between agents that inhibit these enzymes, allows the clinician to better understand and choose effective therapy.

Keywords

Cyclooxygenase isoforms Inhibition Non-steroidal anti-inflammatory drug Selective inhibition Carboxylates Enolic acid Active binding site Propionic acid Anthranilic acid Salicylate 

References

  1. 1.
    Fu J, Masferrer J, Seibert K, Raz A, Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Clin Invest. 1990;86:16737–40.Google Scholar
  2. 2.
    Chandrasekharan NV, Dai H, Roos LT, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci U S A. 2002;99:13926–31.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Botting R, Ayoub SS. COX-3 and the mechanism of action of paracetamol/acetaminophen. Prostaglandins Leukot Essent Fatty Acids. 2005;72:85–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Shitashige M, Morita I, Murota S. Different substrate utilization between prostaglandin endoperoxide H synthase-1 and-2 in NIH3T3 fibroblasts. Biochim Biophys Acta. 1998;1389:57–66.CrossRefPubMedGoogle Scholar
  5. 5.
    Thuresson ED, Lakkides KM, Rieke CJ, et al. Prostaglandin Endoperoxide H Synthase-1: the functions of cyclooxygenase active site residues in the binding, positioning, and oxygenation of arachidonic acid. J Biol Chem. 2001;276(13):10347–59.CrossRefPubMedGoogle Scholar
  6. 6.
    Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA. Arachidonic acid oxygenation by COX- and COX-2. J Biol Chem. 1999;274(33):22903–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Tsai A-L, Kulmacz RJ, Palmer G. Spectroscopic evidence for reaction of prostaglandin H synthase-1 tyrosyl radical with arachidonic acid. J Biol Chem. 1995;270(18):10503–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231:232–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Roth GJ, Majerus PW. The mechanism of the effect of Aspirin on human platelets: 1. Acetylation of a particulate fraction protein. J Clin Invest. 1975;56:624–32.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    De Witt FL, El-Harith EA, Kraemer SA, et al. The Aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J Biol Chem. 1990;265:5192–8.Google Scholar
  11. 11.
    Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120.CrossRefPubMedGoogle Scholar
  12. 12.
    Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid-derived mediators with anti-inflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal anti-inflammatory drugs and transcellular processing. J Exp Med. 2000;192:1197–204.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu X-M, Sansores-Garcia L, Chen X-M, Matijevic-Aleksic N, Du M, Wu KK. Suppression of inducible cyclooxygenases-2 gene transcription by aspirin and sodium salicylate. Proc Natl Acad Sci U S A. 1999;96:5292–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ku EC, Lee W, Kothari HV, Scholer DW. Effect of diclofenac sodium on the arachidonic acid cascade. Am J Med. 1986;80:18–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Scholer DW. Pharmacology of diclofenac sodium. Am J Med. 1986;80:34–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Roujeau J-C, Kelly JP, Naldi L, et al. Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. N Engl J Med. 1995;333(1):1600–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Oaks JL, Gilbert M, Virani MZ, et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature. 2004;427:630–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Trelle S, Reichenbach S, Wandel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ. 2011;342:c7086.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bhala N, Emberson J, Merhi A, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomized trials. Lancet. 2013;382(9894):769–79.CrossRefPubMedGoogle Scholar
  20. 20.
    Rees MC, Cañete-Solér R, López Bernal A, Turnbull AC. Effect of fenamates on prostaglandin E receptor binding. Lancet. 1988;2(8610):541–2.CrossRefPubMedGoogle Scholar
  21. 21.
    Smith RP, Powell JR. Intrauterine pressure changes during mefenamic acid treatment of primary spasmodic dysmenorrhea. Am J Obstet Gynecol. 1982;143:286–92.PubMedGoogle Scholar
  22. 22.
    Derry S, Moore RA. Single dose oral celecoxib for acute postoperative pain in adults. Cochrane Database Syst Rev. 2013;(10):CD004233.Google Scholar
  23. 23.
    Clarke R, Derry S, Moore RA. Single dose oral etoricoxib for acute postoperative pain in adults. Cochrane Database Syst Rev. 20148;(5):CD004309.Google Scholar

Additional Resources

  1. Good overviews of this topic can be found at:Google Scholar
  2. Botting RM. Cyclooxygenase: past, present and future. A tribute to John R. Vane (1927–2004). J Therm Biol. 2006;31:208–19.CrossRefGoogle Scholar
  3. Copeland RA, Williams JM, Giannaras J, et al. Mechanism of selective inhibition of the inducible isoform of prostaglandidn G/H synthase. Proc Natl Acad Sci U S A. 1994;91:11202–6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Grosser T, Ricciotti E, FitzGerald GA. The cardiovascular pharmacology of nonsteroidal anti-inflammatory drugs. Trends Pharmacol Sci. 2017 Jun 23. pii: S0165-6147(17)30116-5.Google Scholar
  5. Kurumbail RG, Kiefer JR, Marnett LJ. Cyclooxygenase enzymes: catalysis and inhibition. Curr Opin Struct Biol. 2001;11:752–60.CrossRefPubMedGoogle Scholar
  6. Marnett LJ. Recent developments in cyclooxygenase inhibition. Prostaglandins Other Lipid Mediat. 2002;68–69:153–64.CrossRefPubMedGoogle Scholar
  7. Park JY, Pillinger MH, Abramson SB. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol. 2006;119:229–40.CrossRefPubMedGoogle Scholar
  8. Picot D, Loll PJ, Garavito RM. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994;367:243–9.CrossRefPubMedGoogle Scholar
  9. So O-Y, Scarafia LE, Mak AY, Callan OH, Swinnery DC. The dynamics of prostaglandin H synthases. J Biol Chem. 1998;273(10):5801–7.CrossRefPubMedGoogle Scholar
  10. Vitale P, Panella A, Scilimati A, Perrone MG. COX-1 inhibitors: beyond structure toward therapy. Med Res Rev. 2016;36(4):641–71.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Roger P. Smith
    • 1
  1. 1.Florida Atlantic UniversityBoca RatonUSA

Personalised recommendations