The Bering Sea Regional Data Assimilation System: From Climate Variability to Short Term Hindcasting

  • Gleb G. Panteleev
  • Max Yaremchuk
  • Vladimir Luchin
  • Oceana Francis
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

We present a regional Data Assimilation System (DAS), which employs the 4-dimensional variational (4dVar) DA approach based on the strong dynamical constraints of a semi-implicit primitive equation model. The developed 4dVar DAS is applied to the Bering Sea in several configurations. First, it is used for the reconstruction of seasonal and annual mean climatological states in the region, including the high resolution mean dynamical ocean topography (MDOT). The dynamically and statistically consistent climatologies are then utilized in various applications, including high-resolution analyses of the transport through the passage of the Aleutian Arc, and of the 2007–2010 circulation on the East Bering Sea shelf with the nested configuration of the DAS. Apart from new insight on the Bering Sea dynamics, the chapter illustrates the importance of developing dynamically consistent climatologies and, in particular, MDOT, for the analysis of the diverse data sets within a wide spectrum of spatial and temporal scales.

Notes

Acknowledgements

This study was supported by the University of Hawaii, the International Arctic Research Center, NSF grants 1107925, 1203740 and ARC-1107327. G. Panteleev and M. Yaremchuk were also supported by the ONR core project “Arctic data assimilation” and program element 0602435N as part of the project “Adjoint-free 4dVar for Navy ocean models”. The authors are indebted to P. Stabeno for providing drifter and current data.

References

  1. 1.
    Brasseur, P. (1991). A variational method for the reconstruction of general circulation fields in the Northern Bering Sea. Journal Geophysical Research, 96, 4891–4907.CrossRefGoogle Scholar
  2. 2.
    Carlotti, F., & Wolf, K.-U. (1998). A Lagrangian ensemble model of Calanus finmarchicus coupled with a 1-D ecosystem model. Fisheries Oceanography, 7(3/4), 191–204.CrossRefGoogle Scholar
  3. 3.
    Cianelli, L., & Bailey, K. M. (2005). Landscape dynamics and resulting species interactions: The cod-capelin system in the southeastern Bering sea. Marine Ecology Progress Series, 291, 227–236.CrossRefGoogle Scholar
  4. 4.
    Coachman, A. K. (1993). On the flow field in the Chirikov Basin. Continental Shelf Research, 13, 481–492.CrossRefGoogle Scholar
  5. 5.
    Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., & Wunsch, C. (2015). ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development Discussions, 8, 3653–3743.  https://doi.org/10.5194/gmdd-8-3653-2015.CrossRefGoogle Scholar
  6. 6.
    Janekovich, I., Powell, B. S., Matthews, D., McManus, M. A., & Sevadjian, J. (2013). 4D-Var data assimilation in a nested, coastal ocean model: A Hawaiian case study. Journal Geophysical Research, 118, 1–14.Google Scholar
  7. 7.
    Hughes, F. W., Coachman, L. K., 7 Aagard, K. (1974). Circulation transport and water exchange in the western Bering Sea. In D. W. Hood and E. J. Kelly (Eds.), Oceanography of the Bering Sea with emphasis on the renewable resources (pp. 59–98). Institute of Marine Science, University of Alaska, Fairbanks.Google Scholar
  8. 8.
    Kurapov, A. L., Foley, D., Strub, P. T., Egbert, G. D., & Allen, J. S. (2011). Variational assimilation of satellite observations in a coastal ocean model off Oregon. Journal Geophysical Research, 116, C05006.  https://doi.org/10.1029/2010JC006909.CrossRefGoogle Scholar
  9. 9.
    Le Dimet, F. X., & Talagrand, O. (1986). Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus Series A, 38, 97–100.CrossRefGoogle Scholar
  10. 10.
    Lindsay, R. W., & Zhang, J. (2006). Assimilation of ice concentration in an ice-ocean model. Journal of Atmospheric and Oceanic Technology, 23, 742–749.CrossRefGoogle Scholar
  11. 11.
    Luchin, V., Kruts, A., Sokolov, O., Rostov, V., Rudykh, N., Perunova, T., et al. (2009) Climatic Atlas of the North Pacific Seas 2009: Bering Sea, Sea of Okhotsk, and Sea of Japan. In V. Akulichev, Yu. Volkov, V. Sapozhnikov and S Levitus (Eds.), NOAA Atlas NESDIS 67 (380 pp.). U.S. Government Printing Office, Washington, D.C., CD Disc.Google Scholar
  12. 12.
    Madec, G., Delecluse, P., Imbard, M., et al. (1999) OPA 8.1 Ocean General Circulation Model. Reference Manual, Note du Pole de Modelisation (Institut Pierre-Simon Laplace (IPSL), France.Google Scholar
  13. 13.
    Maximenko, N., Niiler, P., Rio, M.-H., Melnichenko, O., Centurioni, L., Chambers, D., et al. (2009). Mean dynamic topography of the ocean derived from satellite and drifting buoy data by three different techniques. Journal of Atmospheric and Oceanic Technology, 26(9), 1910–1919.CrossRefGoogle Scholar
  14. 14.
    Mesquita, M. S., Atkinson, D. E., & Hodges, K. I. (2010). Characteristics and variability of the storm tracks in the North Pacific, Bering Sea and Alaska. Journal of Climate, 23, 294–311.  https://doi.org/10.1175/2009/JCLI3019.1.CrossRefGoogle Scholar
  15. 15.
    Moore, A. M., Arango, H. G., Broquet, G., Edwards, C., Veneziani, M., Powell, B., et al. (2011). The regional ocean modeling system (ROMS) 4-dimensional variational data assimilation systems Part II. Performance and application to the california current system. Progress in Oceanography, 91(1), 50–73.CrossRefGoogle Scholar
  16. 16.
    Nechaev, D. A., & Yaremchuk, M. I. (1994). Conductivity-temperature-depth data assimilation into a three-dimensional quasigeostrophic open ocean model. Dynamics of Atmospheres and Oceans, 21, 137–165.CrossRefGoogle Scholar
  17. 17.
    Nechaev, D., Panteleev, G., & Yaremchuk, M. (2005). Reconstruction of the circulation in the limited region with open boundaries: Circulation in the Tsushima Strait. Okeanologiya, 45(6), 805–828.Google Scholar
  18. 18.
    Niiler, P., Maximenko, N., & McWilliams, J. (2003). Dynamically balanced absolute sea level of the global ocean from near-surface velocity observations. Geophysical Research Letters, 30(22), 2164.  https://doi.org/10.1029/2003/GL018628.CrossRefGoogle Scholar
  19. 19.
    Panteleev, G. G., deYoung, B., Reiss, C., & Taggart, C. (2004). Passive tracer reconstruction as a least squares problem with a semi-lagrangian constraint: An application to fish eggs and larvae. Journal of Marine Research, 62, 787–878.CrossRefGoogle Scholar
  20. 20.
    Panteleev, G., Nechaev, D., & Ikeda, M. (2006). Reconstruction of summer Barents Sea circulation from climatological data. Atmosphere-Ocean, 44(2), 111–132.CrossRefGoogle Scholar
  21. 21.
    Panteleev, G. G., Proshutinsky, A., Kulakov, M., Nechaev, D. A., & Maslowski, W. (2007). Investigation of summer Kara Sea circulation employing a variational data assimilation technique. Journal of Geophysical Research, 112, C04S15.  https://doi.org/10.1029/2006jc003728.
  22. 22.
    Panteleev, G., Proshutinsky, A., Nechaev, D., Woodgate, R., & Zhang, J. (2010). Reconstruction and analysis of the Chukchi Sea circulation in 1990–1991. Journal of Geophysical Research, 115, C08023.  https://doi.org/10.1029/2009JC005453.CrossRefGoogle Scholar
  23. 23.
    Panteleev, G., Yaremchuk, M., Stabeno, P., Luchin, V., Nechaev, D., & Kukuchi, T. (2011). Dynamic topography of the Bering Sea. Journal Geophysical Research, 116, C05017.  https://doi.org/10.1029/2010JC006354.CrossRefGoogle Scholar
  24. 24.
    Panteleev, G., Yaremchuk, M., Nechaev, D., & Kikuchi, T. (2012). Variability of the Bering Sea circulation in 1992–2010. Journal of Oceanography, 68, 485–496.  https://doi.org/10.1007/s10872-012-0113-0.CrossRefGoogle Scholar
  25. 25.
    Panteleev, G., Yaremchuk, M., Francis, O., Stabeno, P. J., Weingartner, T., & Zjang, J. (2016). An inverse modeling study of circulation in the Eastern Bering Sea during 2007–2010. Journal of Geophysical Research, 121, 3970–3989.  https://doi.org/10.1002/2015jc011287.
  26. 26.
    Rio, M.-H., Schaeffer, P., Lemoine, J.-M., & Hernandez, F. (2005). Estimation of the ocean mean dynamic topography through the combination of altimetric data, in-situ measurements and GRACE geoid: From global to regional studies. In Proceedings of the GOCINA International Workshop.Google Scholar
  27. 27.
    Rio, M.-H., Schaeffer, P., Moreaux, G., Bourgogne, S., Lemoine, J.-M., & Bronner, E. (2009). A new mean dynamic topography computed over the global ocean from GRACE data altimetry and in-situ measurements. In Proceedings of OceanObs’09 Conference, Venice, Italy.Google Scholar
  28. 28.
    Stabeno, P. J., Schumacher, J. D., & Ohtani, K. (1999). The physical oceanography of the Bering Sea. In Dynamic of the Bering Sea (838 pp.). Fairbanks: Alaska Sea Grant College Program.Google Scholar
  29. 29.
    Stabeno, P. J., Kachel, D. G., & Sullivan, M. E. (2005). Observation from moorings in the Aleutian Passes: Temperature, salinity and transport. Fisheries Oceanography, 14, 39–54.CrossRefGoogle Scholar
  30. 30.
    Tziperman, E., & Thacker, W. C. (1989). An optimal-control/adjoint equation approach to studying the oceanic general circulation. Journal of Physical Oceanography, 19, 1471–1485.CrossRefGoogle Scholar
  31. 31.
    Woodgate, R. A., Aagaard, K., & Weingartner, T. (2005). Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophysical Research Letters, 32, L04601.  https://doi.org/10.1029/2004GL021880.Google Scholar
  32. 32.
    Wunsch, C. (1996). The ocean circulation inverse problem (p. 442). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. 33.
    Yoshinari, H., Maximenko, N. A., & Hacker, P. W. (2006). YoMaHa’05: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Technical Note No. 4, 20 pp.Google Scholar
  34. 34.
    Yaremchuk, M., & Sentchev, A. (2012). Multi-scale correlation functions associated with polynomials of the diffusion operator. Quarterly Journal of the Royal Meteorological Society, 138, 1948–1953.CrossRefGoogle Scholar
  35. 35.
    Yaremchuk, M., Carrier, M., Smith, S., & Jacobs, G. (2013). Background error correlation modeling with diffusion operators, In S. K. Park and L. Xu (Eds.), Data assimilation for atmospheric, oceanic and hydrologic applications (Vol. II, pp. 177–203). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-35088-78.
  36. 36.
    Zhang, J., & Rothrock, D. A. (2005). The effect of sea ice rheology in numerical investigations of climate. Journal Geophysical Research, 110, C08014.  https://doi.org/10.1029/2004JC002599.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gleb G. Panteleev
    • 1
  • Max Yaremchuk
    • 1
  • Vladimir Luchin
    • 2
  • Oceana Francis
    • 3
  1. 1.Naval Research LaboratoryStennis Space CenterHancockUSA
  2. 2.Pacific Oceanological InstituteVladivostokRussia
  3. 3.University of HawaiiHonoluluUSA

Personalised recommendations