Abyssal Mixing in the Laboratory

  • T. Dauxois
  • E. Ermanyuk
  • C. Brouzet
  • S. Joubaud
  • I. Sibgatullin
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

One of the important questions in the dynamics of the oceans is related to the cascade of mechanical energy in the abyss and its contribution to mixing. Here, we propose a unique self-consistent experimental and numerical set up that models a cascade of triadic interactions transferring energy from large-scale monochromatic input to multi-scale internal wave motion. We show how this set-up can be used to tackle the open question of studying internal wave turbulence in a laboratory, by providing, for the first time, explicit evidence of a wave turbulence framework for internal waves. Finally, beyond this regime, we highlight a clear transition to a cascade of small-scale overturning events which induce mixing.

Notes

Acknowledgements

This work was supported by the LABEX iMUST (ANR-10-LABX-0064) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). This work has achieved thanks to the resources of PSMN from ENS de Lyon. E.V.E. gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. INS is gratefull for support Russian Foundation for Basic Research 15-01-06363 and Russian Science Foundation 14-50-00095. Direct numerical simulations were performed on supercomputer Lomonosov of Moscow State University. We thank L. Maas, G. Pillet and H. Scolan for helpful discussions and D. Le Tourneau and M. Moulin for technical assistance.

References

  1. 1.
    Morozov, E. G. (1995). Semidiurnial internal wave global field. Deep-Sea Research, I(42), 135–148.CrossRefGoogle Scholar
  2. 2.
    Egbert, G. D., & Ray, R. D. (2000). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 495, 775–778.CrossRefGoogle Scholar
  3. 3.
    Polzin, K. L., Toole, J. M., Ledwell, J. R., & Schmitt, R. W. (1997). Spatial variability of turbulent mixing in the Abyssal Ocean. Science, 276(5309), 93–96.CrossRefGoogle Scholar
  4. 4.
    Nazarenko, S. V. (2011). Wave turbulence. Lecture Notes in Physics, Berlin: Springer.CrossRefGoogle Scholar
  5. 5.
    Maas, L. R. M., Benielli, D., Sommeria, J., & Lam, F. P. A. (1997). Observations of an internal wave attractor in a confined stably stratified fluid. Nature, 388, 557–561.CrossRefGoogle Scholar
  6. 6.
    Brouzet, C., Sibgatullin, I.N., Ermanyuk, E.V., Joubaud, S., & Dauxois, T. (2017). Scale effects in internal wave attractors. Physical Review Fluids, 2, 114803.Google Scholar
  7. 7.
    Scolan, H., Ermanyuk, E. V., & Dauxois, T. (2013). Nonlinear fate of internal waves attractors. Physical Review Letters, 110, 234501.CrossRefGoogle Scholar
  8. 8.
    Bourget, B., Scolan, H., Dauxois, T., Le Bars, M., Odier, P., & Joubaud, S. (2014). Finite-size effects in parametric subharmonic instability. Journal of Fluid Mechanics, 759, 739–750.CrossRefGoogle Scholar
  9. 9.
    Dauxois, T., Joubaud, S., Odier, P., & Venaille, A. (2018). Instabilities of internal wave beams. Annual Review of Fluid Mechanics, 50, 131–156.Google Scholar
  10. 10.
    Phillips, O. M. (1966). The dynamics of the upper ocean. New York: Cambridge University Press.Google Scholar
  11. 11.
    Dauxois, T., & Young, W. R. (1999). Near-critical refection of internal waves. Journal of Fluid Mechanics, 390, 271–295.CrossRefGoogle Scholar
  12. 12.
    Maas, L. R. M., & Lam, F. P. A. (1995). Geometric focusing of internal waves. Journal of Fluid Mechanics, 300, 1–41.CrossRefGoogle Scholar
  13. 13.
    Berry, M. V. (1981). Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard. European Journal of Physics, 2, 91–102.CrossRefGoogle Scholar
  14. 14.
    Fischer, P. F. (1997). An overlapping Schwarz method for spectral element solution of the incompressible Navier Stokes equations. Journal of Computational Physics, 133, 84–101.CrossRefGoogle Scholar
  15. 15.
    Fischer, P. F, Mullen, J. S. (2001). Filter-based stabilization of spectral element methods. Comptes rendus de l’Académie des Sciences Paris Series I–Analyse Number, 332, 265–270.Google Scholar
  16. 16.
    Brouzet, C., Sibgatullin, I., Scolan, H., Ermanyuk, E. V., & Dauxois, T. (2016). Internal wave attractors examined using laboratory experiments and 3D numerical simulations. Journal of Fluid Mechanics, 793, 109–131.CrossRefGoogle Scholar
  17. 17.
    Brouzet, C. (2016). Internal wave attractors: from geometrical focusing to non-linear energy cascade and mixing. Ph.D. dissertation, ENS de Lyon. https://tel.archives-ouvertes.fr/tel-01361201/en.
  18. 18.
    Gostiaux, L., Didelle, H., Mercier, S., & Dauxois, T. (2007). A novel internal waves generator. Experiments in Fluids, 42(1), 123–130.CrossRefGoogle Scholar
  19. 19.
    Mercier, M. J., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T., & Dauxois, T. (2010). New wave generation. Journal of Fluid Mechanics, 657, 308–334.CrossRefGoogle Scholar
  20. 20.
    Brouzet, C., Ermanyuk, E. V., Joubaud, S., Sibgatullin, I. N., & Dauxois, T. (2016). Energy cascade in internal wave attractors. Europhysics Letters, 113, 44001.CrossRefGoogle Scholar
  21. 21.
    Yarom, E., & Sharon, E. (2014). Experimental observation of steady inertial wave turbulence in deep rotating flows. Nature Physics, 10, 510–514.CrossRefGoogle Scholar
  22. 22.
    Sibgatullin, E., Ermanyuk, L., Maas, X., Xu & Dauxois, T. (2017). Directnumerical simulation of three-dimensional inertial wave attractors. Ivannikov ISPRAS open conference 2017 (ISPRAS) (pp. 137-143). Moscow, Russia.Google Scholar
  23. 23.
    Echeverri, P., Yokossi, T., Balmforth, N. J., & Peacock, T. (2011). Tidally generated internal-wave attractors between double ridges. Journal of Fluid Mechanics, 669, 354–374.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • T. Dauxois
    • 1
  • E. Ermanyuk
    • 2
  • C. Brouzet
    • 1
  • S. Joubaud
    • 1
  • I. Sibgatullin
    • 3
    • 4
  1. 1.Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRSLyonFrance
  2. 2.Lavrentyev Institute of HydrodynamicsNovosibirskRussia
  3. 3.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  4. 4.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations