Spinocerebellar Ataxia Type 6: Molecular Mechanisms and Calcium Channel Genetics

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1049)

Abstract

Spinocerebellar ataxia (SCA) type 6 is an autosomal dominant disease affecting cerebellar degeneration. Clinically, it is characterized by pure cerebellar dysfunction, slowly progressive unsteadiness of gait and stance, slurred speech, and abnormal eye movements with late onset. Pathological findings of SCA6 include a diffuse loss of Purkinje cells, predominantly in the cerebellar vermis. Genetically, SCA6 is caused by expansion of a trinucleotide CAG repeat in the last exon of longest isoform CACNA1A gene on chromosome 19p13.1–p13.2. Normal alleles have 4–18 repeats, while alleles causing disease contain 19–33 repeats. Due to presence of a novel internal ribosomal entry site (IRES) with the mRNA, CACNA1A encodes two structurally unrelated proteins with distinct functions within an overlapping open reading frame (ORF) of the same mRNA: (1) α1A subunit of P/Q-type voltage gated calcium channel; (2) α1ACT, a newly recognized transcription factor, with polyglutamine repeat at C-terminal end. Understanding the function of α1ACT in physiological and pathological conditions may elucidate the pathogenesis of SCA6. More importantly, the IRES, as the translational control element of α1ACT, provides a potential therapeutic target for the treatment of SCA6.

Keywords

SCA6 Polyglutamine Purkinje cells IRES α1ACT 

References

  1. 1.
    Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69PubMedCrossRefGoogle Scholar
  2. 2.
    Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25PubMedCrossRefGoogle Scholar
  3. 3.
    Du X, Wang J, Zhu H, Rinaldo L, Lamar KM, Palmenberg AC, Hansel C, Gomez CM (2013) Second cistron in CACNA1A gene encodes a transcription factor mediating cerebellar development and SCA6. Cell 154:118–133PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM (2006) C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum Mol Genet 15:1587–1599PubMedCrossRefGoogle Scholar
  5. 5.
    Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB, Anderson JH (1997) Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42:933–950PubMedCrossRefGoogle Scholar
  6. 6.
    Jodice C, Mantuano E, Veneziano L, Trettel F, Sabbadini G, Calandriello L, Francia A, Spadaro M, Pierelli F, Salvi F et al (1997) Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Mol Genet 6:1973–1978PubMedCrossRefGoogle Scholar
  7. 7.
    Globas C, du Montcel ST, Baliko L, Boesch S, Depondt C, DiDonato S, Durr A, Filla A, Klockgether T, Mariotti C et al (2008) Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord 23:2232–2238PubMedCrossRefGoogle Scholar
  8. 8.
    Hashimoto T, Sasaki O, Yoshida K, Takei Y, Ikeda S (2003) Periodic alternating nystagmus and rebound nystagmus in spinocerebellar ataxia type 6. Mov Disord 18:1201–1204PubMedCrossRefGoogle Scholar
  9. 9.
    Globas C, Bosch S, Zuhlke C, Daum I, Dichgans J, Burk K (2003) The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol 250:1482–1487PubMedCrossRefGoogle Scholar
  10. 10.
    Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS et al (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66:1717–1720PubMedCrossRefGoogle Scholar
  11. 11.
    Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, Parkinson MH, Durr A, Brice A, Charles P et al (2015) Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol 14:1101–1108PubMedCrossRefGoogle Scholar
  12. 12.
    Fukutake T, Kamitsukasa I, Arai K, Hattori T, Nakajima T (2002) A patient homozygous for the SCA6 gene with retinitis pigmentosa. Clin Genet 61:375–379PubMedCrossRefGoogle Scholar
  13. 13.
    Tashiro H, Suzuki SO, Hitotsumatsu T, Iwaki T (1999) An autopsy case of spinocerebellar ataxia type 6 with mental symptoms of schizophrenia and dementia. Clin Neuropathol 18:198–204PubMedGoogle Scholar
  14. 14.
    Yun JY, Kim JM, Kim HJ, Kim YE, Jeon BS (2012) SCA6 presenting with young-onset parkinsonism without ataxia. Mov Disord 27:1067–1068PubMedCrossRefGoogle Scholar
  15. 15.
    Khan NL, Giunti P, Sweeney MG, Scherfler C, Brien MO, Piccini P, Wood NW, Lees AJ (2005) Parkinsonism and nigrostriatal dysfunction are associated with spinocerebellar ataxia type 6 (SCA6). Mov Disord 20:1115–1119PubMedCrossRefGoogle Scholar
  16. 16.
    Takeshima S, Takeda I, Kobatake K, Yamashita T, Abe K, Kuriyama M (2015) SCA6 presenting parkinsonism without ataxia–A case report. Rinsho Shinkeigaku 55:243–247PubMedCrossRefGoogle Scholar
  17. 17.
    Xie T, Appelbaum D, Bernard J, Padmanaban M, Pu Y, Gomez C (2016) Evaluation of parkinsonism and striatal dopamine transporter loss in patients with spinocerebellar ataxia type 6. J Neurol 263:2302–2307PubMedCrossRefGoogle Scholar
  18. 18.
    Manto MU (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4:2–6PubMedCrossRefGoogle Scholar
  19. 19.
    Craig K, Keers SM, Archibald K, Curtis A, Chinnery PF (2004) Molecular epidemiology of spinocerebellar ataxia type 6. Ann Neurol 55:752–755PubMedCrossRefGoogle Scholar
  20. 20.
    Craig K, Takiyama Y, Soong BW, Jardim LB, Saraiva-Pereira ML, Lythgow K, Morino H, Maruyama H, Kawakami H, Chinnery PF (2008) Pathogenic expansions of the SCA6 locus are associated with a common CACNA1A haplotype across the globe: founder effect or predisposing chromosome? Eur J Hum Genet 16:841–847PubMedCrossRefGoogle Scholar
  21. 21.
    Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, Pulst SM (1997) Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology 49:1247–1251PubMedCrossRefGoogle Scholar
  22. 22.
    Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–183PubMedCrossRefGoogle Scholar
  23. 23.
    Pujana MA, Corral J, Gratacos M, Combarros O, Berciano J, Genis D, Banchs I, Estivill X, Volpini V (1999) Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases. The Ataxia Study Group. Hum Genet 104:516–522PubMedCrossRefGoogle Scholar
  24. 24.
    Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, Fetoni V, Mariotti C, Migone N, Di Donato S et al (2004) Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol 61:727–733PubMedCrossRefGoogle Scholar
  25. 25.
    Bryer A, Krause A, Bill P, Davids V, Bryant D, Butler J, Heckmann J, Ramesar R, Greenberg J (2003) The hereditary adult-onset ataxias in South Africa. J Neurol Sci 216:47–54PubMedCrossRefGoogle Scholar
  26. 26.
    Jiang H, Tang B, Xia K, Zhou Y, Xu B, Zhao G, Li H, Shen L, Pan Q, Cai F (2005) Spinocerebellar ataxia type 6 in Mainland China: molecular and clinical features in four families. J Neurol Sci 236:25–29PubMedCrossRefGoogle Scholar
  27. 27.
    Teive HA, Munhoz RP, Raskin S, Werneck LC (2008) Spinocerebellar ataxia type 6 in Brazil. Arq Neuropsiquiatr 66:691–694PubMedCrossRefGoogle Scholar
  28. 28.
    Bang OY, Huh K, Lee PH, Kim HJ (2003) Clinical and neuroradiological features of patients with spinocerebellar ataxias from Korean kindreds. Arch Neurol 60:1566–1574PubMedCrossRefGoogle Scholar
  29. 29.
    Storey E, du Sart D, Shaw JH, Lorentzos P, Kelly L, McKinley Gardner RJ, Forrest SM, Biros I, Nicholson GA (2000) Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet 95:351–357PubMedCrossRefGoogle Scholar
  30. 30.
    van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, Maat-Kievit JA, Dooijes D, Notermans NC, Lindhout D et al (2002) Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 58:702–708PubMedCrossRefGoogle Scholar
  31. 31.
    Yabe I, Sasaki H, Matsuura T, Takada A, Wakisaka A, Suzuki Y, Fukazawa T, Hamada T, Oda T, Ohnishi A et al (1998) SCA6 mutation analysis in a large cohort of the Japanese patients with late-onset pure cerebellar ataxia. J Neurol Sci 156:89–95PubMedCrossRefGoogle Scholar
  32. 32.
    Sasaki H, Yabe I, Tashiro K (2003) The hereditary spinocerebellar ataxias in Japan. Cytogenet Genome Res 100:198–205PubMedCrossRefGoogle Scholar
  33. 33.
    Ishikawa K, Tanaka H, Saito M, Ohkoshi N, Fujita T, Yoshizawa K, Ikeuchi T, Watanabe M, Hayashi A, Takiyama Y et al (1997) Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am J Hum Genet 61:336–346PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Verbeek DS, Piersma SJ, Hennekam EF, Ippel EF, Pearson PL, Sinke RJ (2004) Haplotype study in Dutch SCA3 and SCA6 families: evidence for common founder mutations. Eur J Hum Genet 12:441–446PubMedCrossRefGoogle Scholar
  35. 35.
    Yabe I, Sasaki H, Yamashita I, Tashiro K, Takei A, Suzuki Y, Kida H, Takiyama Y, Nishizawa M, Hokezu Y et al (2001) Predisposing chromosome for spinocerebellar ataxia type 6 (SCA6) in Japanese. J Med Genet 38:328–333PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gomez CM (1993) Spinocerebellar ataxia type 6. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH et al (eds) GeneReviews(R). Seattle, WAGoogle Scholar
  37. 37.
    Griggs RC, Nutt JG (1995) Episodic ataxias as channelopathies. Ann Neurol 37:285–287PubMedCrossRefGoogle Scholar
  38. 38.
    Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552PubMedCrossRefGoogle Scholar
  39. 39.
    Montagna P (2000) Molecular genetics of migraine headaches: a review. Cephalalgia 20:3–14PubMedCrossRefGoogle Scholar
  40. 40.
    Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Mohrenweiser H, Litt M, Hofker MH, Haan J, Ferrari MD, Frants RR (1996) A 3-Mb region for the familial hemiplegic migraine locus on 19p13.1-p13.2: exclusion of PRKCSH as a candidate gene. Dutch Migraine Genetic Research Group. Eur J Hum Genet 4:321–328PubMedCrossRefGoogle Scholar
  41. 41.
    Terwindt GM, Ophoff RA, Haan J, Frants RR, Ferrari MD (1996) Familial hemiplegic migraine: a clinical comparison of families linked and unlinked to chromosome 19.DMG RG. Cephalalgia 16:153–155PubMedCrossRefGoogle Scholar
  42. 42.
    Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM (1997) The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet 60:842–850PubMedPubMedCentralGoogle Scholar
  43. 43.
    Jen J, Yue Q, Nelson SF, Yu H, Litt M, Nutt J, Baloh RW (1999) A novel nonsense mutation in CACNA1A causes episodic ataxia and hemiplegia. Neurology 53:34–37PubMedCrossRefGoogle Scholar
  44. 44.
    Alonso I, Barros J, Tuna A, Coelho J, Sequeiros J, Silveira I, Coutinho P (2003) Phenotypes of spinocerebellar ataxia type 6 and familial hemiplegic migraine caused by a unique CACNA1A missense mutation in patients from a large family. Arch Neurol 60:610–614PubMedCrossRefGoogle Scholar
  45. 45.
    Schelhaas HJ, Van de Warrenburg BP, Kremer HP, Zwarts MJ (2004) Neuromuscular transmission in SCA6. Ann Neurol 55:451–452PubMedCrossRefGoogle Scholar
  46. 46.
    Freilinger T, Ackl N, Ebert A, Schmidt C, Rautenstrauss B, Dichgans M, Danek A (2011) A novel mutation in CACNA1A associated with hemiplegic migraine, cerebellar dysfunction and late-onset cognitive decline. J Neurol Sci 300:160–163PubMedCrossRefGoogle Scholar
  47. 47.
    Garcia Segarra N, Gautschi I, Mittaz-Crettol L, Kallay Zetchi C, Al-Qusairi L, Van Bemmelen MX, Maeder P, Bonafe L, Schild L, Roulet-Perez E (2014) Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A. J Neurol Sci 342:69–78PubMedCrossRefGoogle Scholar
  48. 48.
    Tantsis EM, Gill D, Griffiths L, Gupta S, Lawson J, Maksemous N, Ouvrier R, Riant F, Smith R, Troedson C et al (2016) Eye movement disorders are an early manifestation of CACNA1A mutations in children. Dev Med Child Neurol 58:639–644PubMedCrossRefGoogle Scholar
  49. 49.
    Mariotti C, Gellera C, Grisoli M, Mineri R, Castucci A, Di Donato S (2001) Pathogenic effect of an intermediate-size SCA-6 allele (CAG)(19) in a homozygous patient. Neurology 57:1502–1504PubMedCrossRefGoogle Scholar
  50. 50.
    Shizuka M, Watanabe M, Ikeda Y, Mizushima K, Okamoto K, Shoji M (1998) Molecular analysis of a de novo mutation for spinocerebellar ataxia type 6 and (CAG)n repeat units in normal elder controls. J Neurol Sci 161:85–87PubMedCrossRefGoogle Scholar
  51. 51.
    Katayama T, Ogura Y, Aizawa H, Kuroda H, Suzuki Y, Kuroda K, Kikuchi K (2000) Nineteen CAG repeats of the SCA6 gene in a Japanese patient presenting with ataxia. J Neurol 247:711–712PubMedCrossRefGoogle Scholar
  52. 52.
    Schols L, Kruger R, Amoiridis G, Przuntek H, Epplen JT, Riess O (1998) Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry 64:67–73PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Matsuyama Z, Kawakami H, Maruyama H, Izumi Y, Komure O, Udaka F, Kameyama M, Nishio T, Kuroda Y, Nishimura M et al (1997) Molecular features of the CAG repeats of spinocerebellar ataxia 6 (SCA6). Hum Mol Genet 6:1283–1287PubMedCrossRefGoogle Scholar
  54. 54.
    Takahashi H, Ishikawa K, Tsutsumi T, Fujigasaki H, Kawata A, Okiyama R, Fujita T, Yoshizawa K, Yamaguchi S, Tomiyasu H et al (2004) A clinical and genetic study in a large cohort of patients with spinocerebellar ataxia type 6. J Hum Genet 49:256–264PubMedCrossRefGoogle Scholar
  55. 55.
    Ikeuchi T, Takano H, Koide R, Horikawa Y, Honma Y, Onishi Y, Igarashi S, Tanaka H, Nakao N, Sahashi K et al (1997) Spinocerebellar ataxia type 6: CAG repeat expansion in alpha1A voltage-dependent calcium channel gene and clinical variations in Japanese population. Ann Neurol 42:879–884PubMedCrossRefGoogle Scholar
  56. 56.
    Takiyama Y, Sakoe K, Namekawa M, Soutome M, Esumi E, Ogawa T, Ishikawa K, Mizusawa H, Nakano I, Nishizawa M (1998) A Japanese family with spinocerebellar ataxia type 6 which includes three individuals homozygous for an expanded CAG repeat in the SCA6/CACNL1A4 gene. J Neurol Sci 158:141–147PubMedCrossRefGoogle Scholar
  57. 57.
    Zoghbi HY (1997) CAG repeats in SCA6. Anticipating new clues. Neurology 49:1196–1199PubMedCrossRefGoogle Scholar
  58. 58.
    Lindquist SG, Norremolle A, Hjermind LE, Hasholt L, Nielsen JE (2006) Meiotic CAG repeat instability in spinocerebellar ataxia type 6: maternally transmitted elongation in a presumed sporadic case. J Neurol Sci 241:95–98PubMedCrossRefGoogle Scholar
  59. 59.
    Shimazaki H, Takiyama Y, Sakoe K, Amaike M, Nagaki H, Namekawa M, Sasaki H, Nakano I, Nishizawa M (2001) Meiotic instability of the CAG repeats in the SCA6/CACNA1A gene in two Japanese SCA6 families. J Neurol Sci 185:101–107PubMedCrossRefGoogle Scholar
  60. 60.
    Mantuano E, Veneziano L, Jodice C, Frontali M (2003) Spinocerebellar ataxia type 6 and episodic ataxia type 2: differences and similarities between two allelic disorders. Cytogenet Genome Res 100:147–153PubMedCrossRefGoogle Scholar
  61. 61.
    Yang Q, Hashizume Y, Yoshida M, Wang Y, Goto Y, Mitsuma N, Ishikawa K, Mizusawa H (2000) Morphological Purkinje cell changes in spinocerebellar ataxia type 6. Acta Neuropathol 100:371–376PubMedCrossRefGoogle Scholar
  62. 62.
    Lukas C, Schols L, Bellenberg B, Rub U, Przuntek H, Schmid G, Koster O, Suchan B (2006) Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett 408:230–235PubMedCrossRefGoogle Scholar
  63. 63.
    Honjo K, Ohshita T, Kawakami H, Naka H, Imon Y, Maruyama H, Mimori Y, Matsumoto M (2004) Quantitative assessment of cerebral blood flow in genetically confirmed spinocerebellar ataxia type 6. Arch Neurol 61:933–937PubMedCrossRefGoogle Scholar
  64. 64.
    Murata Y, Kawakami H, Yamaguchi S, Nishimura M, Kohriyama T, Ishizaki F, Matsuyama Z, Mimori Y, Nakamura S (1998) Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol 55:1348–1352PubMedCrossRefGoogle Scholar
  65. 65.
    Reetz K, Costa AS, Mirzazade S, Lehmann A, Juzek A, Rakowicz M, Boguslawska R, Schols L, Linnemann C, Mariotti C et al (2013) Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain 136:905–917PubMedCrossRefGoogle Scholar
  66. 66.
    Falcon MI, Gomez CM, Chen EE, Shereen A, Solodkin A (2015) Early cerebellar network shifting in spinocerebellar ataxia type 6. Cereb Cortex 26:3205–3218PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wang PS, Liu RS, Yang BH, Soong BW (2007) Regional patterns of cerebral glucose metabolism in spinocerebellar ataxia type 2, 3 and 6: a voxel-based FDG-positron emission tomography analysis. J Neurol 254:838–845PubMedCrossRefGoogle Scholar
  68. 68.
    Wullner U, Reimold M, Abele M, Burk K, Minnerop M, Dohmen BM, Machulla HJ, Bares R, Klockgether T (2005) Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol 62:1280–1285PubMedCrossRefGoogle Scholar
  69. 69.
    Kawai Y, Suenaga M, Watanabe H, Ito M, Kato K, Kato T, Ito K, Tanaka F, Sobue G (2008) Prefrontal hypoperfusion and cognitive dysfunction correlates in spinocerebellar ataxia type 6. J Neurol Sci 271:68–74PubMedCrossRefGoogle Scholar
  70. 70.
    Ross BP, Braddy AC, McGeary RP, Blanchfield JT, Prokai L, Toth I (2004) Micellar aggregation and membrane partitioning of bile salts, fatty acids, sodium dodecyl sulfate, and sugar-conjugated fatty acids: correlation with hemolytic potency and implications for drug delivery. Mol Pharm 1:233–245PubMedCrossRefGoogle Scholar
  71. 71.
    Sasaki H, Kojima H, Yabe I, Tashiro K, Hamada T, Sawa H, Hiraga H, Nagashima K (1998) Neuropathological and molecular studies of spinocerebellar ataxia type 6 (SCA6). Acta Neuropathol 95:199–204PubMedCrossRefGoogle Scholar
  72. 72.
    Koeppen AH (2005) The pathogenesis of spinocerebellar ataxia. Cerebellum 4:62–73PubMedCrossRefGoogle Scholar
  73. 73.
    Tsuchiya K, Oda T, Yoshida M, Sasaki H, Haga C, Okino H, Tominaga I, Matsui K, Akiyama H, Hashizume Y (2005) Degeneration of the inferior olive in spinocerebellar ataxia 6 may depend on disease duration: report of two autopsy cases and statistical analysis of autopsy cases reported to date. Neuropathology 25:125–135PubMedCrossRefGoogle Scholar
  74. 74.
    Gierga K, Schelhaas HJ, Brunt ER, Seidel K, Scherzed W, Egensperger R, de Vos RAI, den Dunnen W, Ippel PF, Petrasch-Parwez E et al (2009) Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites. Neuropathol Appl Neuro 35:515–527CrossRefGoogle Scholar
  75. 75.
    Lee A, Scheuer T, Catterall WA (2000) Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J Neurosci 20:6830–6838PubMedCrossRefGoogle Scholar
  76. 76.
    Lee A, Wong ST, Gallagher D, Li B, Storm DR, Scheuer T, Catterall WA (1999) Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399:155–159PubMedCrossRefGoogle Scholar
  77. 77.
    Solodkin A, Gomez CM (2012) Spinocerebellar ataxia type 6. Handb Clin Neurol 103:461–473PubMedCrossRefGoogle Scholar
  78. 78.
    Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW, CINCH investigators (2007) Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130:2484–2493PubMedCrossRefGoogle Scholar
  79. 79.
    Strupp M, Zwergal A, Brandt T (2007) Episodic ataxia type 2. Neurotherapeutics 4:267–273PubMedCrossRefGoogle Scholar
  80. 80.
    Raike RS, Kordasiewicz HB, Thompson RM, Gomez CM (2007) Dominant-negative suppression of Cav2.1 currents by alpha(1)2.1 truncations requires the conserved interaction domain for beta subunits. Mol Cell Neurosci 34:168–177PubMedCrossRefGoogle Scholar
  81. 81.
    Palmenberg AC, Sgro JY (1997) Topological organization of picornaviral genomes: statistical prediction of RNA structural signals. Semin Virol 8:231–241CrossRefGoogle Scholar
  82. 82.
    Spriggs KA, Stoneley M, Bushell M, Willis AE (2008) Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 100:27–38PubMedCrossRefGoogle Scholar
  83. 83.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Du X, Semler BL, Gomez CM (2014) Revelations from a bicistronic calcium channel gene. Cell Cycle 13:875–876PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB et al (2000) Nomenclature of voltage-gated sodium channels. Neuron 28:365–368PubMedCrossRefGoogle Scholar
  86. 86.
    Greenberg DA (1997) Calcium channels in neurological disease. Ann Neurol 42:275–282PubMedCrossRefGoogle Scholar
  87. 87.
    Hofmann F, Biel M, Flockerzi V (1994) Molecular basis for Ca2+ channel diversity. Ann Rev Neurosci 17:399–418PubMedCrossRefGoogle Scholar
  88. 88.
    Snutch TP, Reiner PB (1992) Ca2+ channels: diversity of form and function. Curr Opin Neurobiol 2:247–253PubMedCrossRefGoogle Scholar
  89. 89.
    Pietrobon D (2002) Calcium channels and channelopathies of the central nervous system. Mol Neurobiol 25:31–50PubMedCrossRefGoogle Scholar
  90. 90.
    Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357–1370PubMedCrossRefGoogle Scholar
  91. 91.
    Miller RJ (1997) Calcium channels prove to be a real headache. Trends Neurosci 20:189–192PubMedCrossRefGoogle Scholar
  92. 92.
    Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59:882–901PubMedCrossRefGoogle Scholar
  93. 93.
    Kelly JG, O’Malley K (1993) Calcium antagonists in the elderly. Drugs Aging 3:400–407PubMedCrossRefGoogle Scholar
  94. 94.
    Sutton KG, McRory JE, Guthrie H, Murphy TH, Snutch TP (1999) P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 401:800–804PubMedCrossRefGoogle Scholar
  95. 95.
    Kulik A, Nakadate K, Hagiwara A, Fukazawa Y, Lujan R, Saito H, Suzuki N, Futatsugi A, Mikoshiba K, Frotscher M et al (2004) Immunocytochemical localization of the alpha 1A subunit of the P/Q-type calcium channel in the rat cerebellum. Eur J Neurosci 19:2169–2178PubMedCrossRefGoogle Scholar
  96. 96.
    Matsuyama Z, Wakamori M, Mori Y, Kawakami H, Nakamura S, Imoto K (1999) Direct alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6. J Neurosci 19:RC14PubMedCrossRefGoogle Scholar
  97. 97.
    Restituito S, Thompson RM, Eliet J, Raike RS, Riedl M, Charnet P, Gomez CM (2000) The polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci 20:6394–6403PubMedGoogle Scholar
  98. 98.
    Toru S, Murakoshi T, Ishikawa K, Saegusa H, Fujigasaki H, Uchihara T, Nagayama S, Osanai M, Mizusawa H, Tanabe T (2000) Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J Biol Chem 275:10893–10898PubMedCrossRefGoogle Scholar
  99. 99.
    Saegusa H, Wakamori M, Matsuda Y, Wang J, Mori Y, Zong S, Tanabe T (2007) Properties of human Cav2.1 channel with a spinocerebellar ataxia type 6 mutation expressed in Purkinje cells. Mol Cell Neurosci 34:261–270PubMedCrossRefGoogle Scholar
  100. 100.
    Watase K, Barrett CF, Miyazaki T, Ishiguro T, Ishikawa K, Hu Y, Unno T, Sun Y, Kasai S, Watanabe M et al (2008) Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci USA 105:11987–11992PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kubodera T, Yokota T, Ohwada K, Ishikawa K, Miura H, Matsuoka T, Mizusawa H (2003) Proteolytic cleavage and cellular toxicity of the human alpha1A calcium channel in spinocerebellar ataxia type 6. Neurosci Lett 341:74–78PubMedCrossRefGoogle Scholar
  102. 102.
    Sakurai T, Westenbroek RE, Rettig J, Hell J, Catterall WA (1996) Biochemical properties and subcellular distribution of the BI and rbA isoforms of alpha 1A subunits of brain calcium channels. J Cell Biol 134:511–528PubMedCrossRefGoogle Scholar
  103. 103.
    Akbar U, Ashizawa T (2015) Ataxia. Neurol Clin 33:225–248PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ilg W, Timmann D (2013) Gait ataxia–specific cerebellar influences and their rehabilitation. Mov Disord 28:1566–1575PubMedCrossRefGoogle Scholar
  105. 105.
    Kamp MA, Hanggi D, Steiger HJ, Schneider T (2012) Diversity of presynaptic calcium channels displaying different synaptic properties. Rev Neurosci 23:179–190PubMedCrossRefGoogle Scholar
  106. 106.
    Pietrobon D (2010) CaV2.1 channelopathies. Pflugers Arch 460:375–393PubMedCrossRefGoogle Scholar
  107. 107.
    Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3:157–163PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Serra HG, Byam CE, Lande JD, Tousey SK, Zoghbi HY, Orr HT (2004) Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum Mol Genet 13:2535–2543PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9162PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I (2008) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 28:12713–12724PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    van de Leemput J, Chandran J, Knight MA, Holtzclaw LA, Scholz S, Cookson MR, Houlden H, Gwinn-Hardy K, Fung HC, Lin X et al (2007) Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3:e108PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Piedras-Renteria ES, Watase K, Harata N, Zhuchenko O, Zoghbi HY, Lee CC, Tsien RW (2001) Increased expression of alpha 1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6. J Neurosci 21:9185–9193Google Scholar
  113. 113.
    Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15:6403–6418PubMedCrossRefGoogle Scholar
  114. 114.
    Burgess DL, Jones JM, Meisler MH, Noebels JL (1997) Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 88:385–392PubMedCrossRefGoogle Scholar
  115. 115.
    Collier ML, Ji G, Wang Y, Kotlikoff MI (2000) Calcium-induced calcium release in smooth muscle: loose coupling between the action potential and calcium release. J Gen Physiol 115:653–662PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Tully K, Treistman SN (2004) Distinct intracellular calcium profiles following influx through N- versus Ltype calcium channels: role of Ca2+-induced Ca2+ release. J Neurophysiol 92:135–143PubMedCrossRefGoogle Scholar
  117. 117.
    Scott VE, Felix R, Arikkath J, Campbell KP (1998) Evidence for a 95 kDa short form of the alpha1A subunit associated with the omega-conotoxin MVIIC receptor of the P/Q-type Ca2+ channels. J Neurosci 18:641–647PubMedCrossRefGoogle Scholar
  118. 118.
    Forman MS, Trojanowski JQ, Lee VM (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10:1055–1063PubMedCrossRefGoogle Scholar
  119. 119.
    Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6:743–755PubMedCrossRefGoogle Scholar
  120. 120.
    Van de Warrenburg BP, Bakker M, Kremer BP, Bloem BR, Allum JH (2005) Trunk sway in patients with spinocerebellar ataxia. Mov Disord 20:1006–1013PubMedCrossRefGoogle Scholar
  121. 121.
    Nucifora FC Jr, Ellerby LM, Wellington CL, Wood JD, Herring WJ, Sawa A, Hayden MR, Dawson VL, Dawson TM, Ross CA (2003) Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. J Biol Chem 278:13047–13055PubMedCrossRefGoogle Scholar
  122. 122.
    Lipinski MM, Yuan J (2004) Mechanisms of cell death in polyglutamine expansion diseases. Curr Opin Pharmacol 4:85–90PubMedCrossRefGoogle Scholar
  123. 123.
    Miki T, Zwingman TA, Wakamori M, Lutz CM, Cook SA, Hosford DA, Herrup K, Fletcher CF, Mori Y, Frankel WN et al (2008) Two novel alleles of tottering with distinct Ca(v)2.1 calcium channel neuropathologies. Neuroscience 155:31–44PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Jun K, Piedras-Renteria ES, Smith SM, Wheeler DB, Lee SB, Lee TG, Chin H, Adams ME, Scheller RH, Tsien RW et al (1999) Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha(1A)-subunit. Proc Natl Acad Sci USA 96:15245–15250PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Saito H, Okada M, Miki T, Wakamori M, Futatsugi A, Mori Y, Mikoshiba K, Suzuki N (2009) Knockdown of Cav2.1 calcium channels is sufficient to induce neurological disorders observed in natural occurring Cacna1a mutants in mice. Biochem Biophys Res Commun 390:1029–1033PubMedCrossRefGoogle Scholar
  126. 126.
    Todorov B, Kros L, Shyti R, Plak P, Haasdijk ED, Raike RS, Frants RR, Hess EJ, Hoebeek FE, De Zeeuw CI et al (2012) Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice. Cerebellum 11:246–258PubMedCrossRefGoogle Scholar
  127. 127.
    Mark MD, Maejima T, Kuckelsberg D, Yoo JW, Hyde RA, Shah V, Gutierrez D, Moreno RL, Kruse W, Noebels JL et al (2011) Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J Neurosci 31:4311–4326PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Unno T, Wakamori M, Koike M, Uchiyama Y, Ishikawa K, Kubota H, Yoshida T, Sasakawa H, Peters C, Mizusawa H et al (2012) Development of Purkinje cell degeneration in a knockin mouse model reveals lysosomal involvement in the pathogenesis of SCA6. Proc Natl Acad Sci USA 109:17693–17698PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB, Orr HT (2004) Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 24:8853–8861PubMedCrossRefGoogle Scholar
  130. 130.
    Mark MD, Krause M, Boele HJ, Kruse W, Pollok S, Kuner T, Dalkara D, Koekkoek S, De Zeeuw CI, Herlitze S (2015) Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity. J Neurosci 35:8882–8895PubMedCrossRefGoogle Scholar
  131. 131.
    Miyazaki Y, Du X, Muramatsu S, Gomez CM (2016) An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med 8:347–394CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of NeurologyThe University of ChicagoChicagoUSA

Personalised recommendations