Models of Logical Elements for DF Consideration

  • Vazgen Melikyan


A logical model of a digital element is described for taking into account the influence of DF, providing accuracy of simulation results close to the circuit analysis and slightly less than logical analysis of the speed of calculations on the account of the operation of continuous variables, the use of the corresponding rules for calculating logical functions and interpretations of the generalized variable of considered DFs in the simulation process.


  1. 164.
    Kim H., Jean J. Concurrency Preserving Partitioning Algorithm for Parallel Logic Simulation // VLSI Design. -1999. -Vol. 9, No. 3. -P. 23-29.Google Scholar
  2. 172.
    Levin V.I. Dynamics of Logical devices and systems. -M.: Energy, 1980. -224p. (in Russian)Google Scholar
  3. 174.
    Melikyan V.Sh., Ovasapyan N.O., Petrukhin V.P. United system of logic simulation and layout design of VLSI // Automation design in electronics, “Technics”, Vol. 40, Kiev, 1989. -P. 61-64. (in Russian)Google Scholar
  4. 181.
    Wang Z., Maurel P.M. LECSIM: A levelized event driven compiled logic simulator // ACM/IEEE 27th Design Automation Conference. -Orlando, Florida, 1990. -P. 491-496.Google Scholar
  5. 182.
    Hayes J.P. Digital Simulation with multiple logic values // IEEE Transaction on CAD. -1986. -Vol. 5, No. 2. -P. 274-283.CrossRefGoogle Scholar
  6. 191.
    Naroska E. Parallel VHDL simulation // ACM/IEEE Conference Design, Automation and Test in Europe (DATE). -Paris, 1998. -P. 159.Google Scholar
  7. 196.
    Noble B.L., Wade J.C., Chamberlain R.D. Performance Predictions for Speculative, Syschronous, VLSI Logic Simulation // 34th Annual Simulation Symposium. -Waileau Maui, 2001. -P. 56-64.Google Scholar
  8. 207.
    Abramov I.I., Goncharenko I.A., Ignatenko S.A., Korolev A.V., Novik E.G., Rogachev A.I. Nanodev: A Nanoelectronic-Device Simulation Software System // Russian Microelectronics. -2003. -Vol. 32, No. 2. -P. 97-104.Google Scholar
  9. 187.
    Bailay M.L., Briner J.V., Chamberlain R.D. Parallel logic simulation of VLSI systems // ACM Computing Surveys. -1994. -Vol. 26, No. 3. -P. 255-294.Google Scholar
  10. 173.
    Zolotorevich L.A. Delay-Conscious Switch-Level Modeling of MOS LSI Circuits // Russian Microelectronics. -2003. -Vol. 32, No. 3. -P. 182-188.Google Scholar
  11. 59.
    Melikyan V. Sh., Muradyan V.O. Logic Simulation of radiation behavior of digital circuits // International conference “Computer science and information technologies”. -Yerevan, 2003. -P. 368-398. (in Russian)Google Scholar
  12. 60.
    Massengill L.W., Baranski A.E., Van Nort D.O. Analysis of Single-Event Effects in Combinational Logic-Simulation of the AM2901 BitSlice Processor // IEEE Transactions on Nuclear Science. -2000. -Vol. 47, No. 6. -P. 1911-1917.Google Scholar
  13. 167.
    Melikyan V., Poghosyan A., Durgaryan A., Petrosyan H., Simonyan M. Method of Parametrical Optimization of Multi-Core Processors // Proceedings of the 31st International Scientific-Technical Conference on “Electronics and Nanotechnologies”, Kiev, Ukraine, 2011. -P. 126-130. (in Russian)Google Scholar
  14. 168.
    Melikyan V.Sh., Simonyan A.Sh. Consideration of external affects in the program of logic analysis // Interuniversity proceedings of YPI “Technical means and mathematical provision of computing systems”, Yerevan, 1990. -P. 61-64. (in Russian)Google Scholar
  15. 169.
    Melikyan V.Sh. Principles of logic simulation of digital circuits with consideration of destabilizing factors // Proceedings of “Computer Science and Information Technologies” International Conference, Yerevan, 1999. -389-393. (in Russian)Google Scholar
  16. 170.
    Melikyan V.Sh., Balagezyan A.R. Key design tools of logic macromodels of digital circuits // Proceedings of “Computer Science and Information Technologies” International Conference, Yerevan, 1999. -P. 394-398. (in Russian)Google Scholar
  17. 202.
    Vlakh Yu, Singkhal K. Machine methods of analysis and design of electronical circuits -M.: Radio i svyaz, 1988. -560p. (in Russian)Google Scholar
  18. 277.
    Melikyan V.Sh. Logic block of digital cell model for consideration of destabilizing factors // Elektronica I svyaz, N 8, Vol. 2, Kiev, 2000. -P. 266-268. (in Russian)Google Scholar
  19. 278.
    Melikyan V.Sh. Simulation of logics of a digital cell for consideration of destabilizing factors’ affects // Proceedings of “Computer Science and Information Technologies” International Conference, Yerevan, 2001.-P. 394-398. (in Russian)Google Scholar
  20. 279.
    Melikyan V.Sh., Harutyunyan A.A., Vatyan A.O. Logic model of part of digital circuits with consideration of destabilization factors // Proceedings of the 5th International Conference on The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM’99), Lvov, 1999. -P. 145-146. (in Russian)Google Scholar
  21. 280.
    Melikyan V.Sh. Inertance block of models of digital element for consideration of destabilizing factors // Elektronica I svyaz, N 8, Vol. 2, Kiev, 2000. -P. 269-271. (in Russian)Google Scholar
  22. 281.
    Melikyan V., Harutyunyan A. Consideration algorithm of external influence’s affect on digital circuits functioning // International conference “Computer science and information technologies”. -Yerevan, 1997. -P. 330-333.Google Scholar
  23. 282.
    Harris J. An Introduction to Fuzzy Logic Applications. -Kluwer Academic Publishers, 2002. -232p.Google Scholar
  24. 239.
    Arkhangelskiy A.Y., Melikyan V.Sh., Levshin N.G. Principles of designing a system of mixed-mode simulation of electronic circuits // Seminar materials of “Design Automation in radioelectronics and electrical engineering”, Moscow, 1984. -P. 91-93. (in Russian)Google Scholar
  25. 283.
    Virant J. Design Considerations of Time in Fuzzy Systems. -Kluwer Academic Publishers, 2000. -512p.Google Scholar
  26. 284.
    Zadeh L.A. Fuzzy Logic, Neural Networks and Soft Computing // Communications of the ACM. -1994. -Vol. 37, No. 3. -P. 77-84.Google Scholar
  27. 285.
    Kalashnikov O.A. Fuzzy Simulation of Total Dose Functional Failures of Digital Units // Third Workshop on Electronics for LHC Experiments. -London, 1997. -P. 481-486.Google Scholar
  28. 286.
    Babuska R. Accuracy and Transparency of Fuzzy Systems // Advances in Computational Intelligence and Learning: Methods and Applications. International Series in Intelligent Technologies. -Kluwer Academic Publishers, 2002. -P. 3-16.Google Scholar
  29. 287.
    Zadeh L.A. The Role of Fuzzy Logic in Modeling, Identification, and Control // Modeling, Identification and Control. -1994. -Vol. 15, No. 3. -P. 191-203.Google Scholar
  30. 288.
    Kofman A. Introduction to the theory of fuzzy sets. -M.: Radio and. communication, 1982. -428p. (in Russian)Google Scholar
  31. 289.
    Ubar R. Dynamic analysis of digital circuits with multi-valued simulation // Microelectronics. -1998. -Vol. 29, No. 11. -P. 821-826.CrossRefGoogle Scholar
  32. 236.
    Arkhangelskiy A.Y. Lavrenov O.E., Rojukalns P.P., Melikyan V. Sh., Svettsov S.V., Fedorkov B.G. A program of mixed-mode simulation of analog-digital VLSI//Theses of reports of All-Union Conference of “Methods and microelectronic means of digital conversion and signal processing”, Riga, 1983. -P. 231-236. (in Russian)Google Scholar
  33. 237.
    Arkhangelskiy A.Y., Melikyan V.Sh. Functionality models of logic cells in the program of mixed-mode logic-circuit simulation // Theses of reports of All-Union Scientific-Technical Conference of “Design Automation of Computers and Systems”, Yerevan, 1983. -P. 80-82. (in Russian)Google Scholar
  34. 238.
    Melikyan V.Sh., Arkhangelskiy A.Y. Mixed-mode circuit and logic simulation of analog digital circuits // Electronic simulation, Vol. 6, N5, Kiev, Ukraine, 1984. -P. 35-39. (in Russian)Google Scholar
  35. 240.
    Arkhangelskiy A.Y., Melikyan V.Sh. A program of mixed-mode analysis of analog-digital circuits // Proceedings of “Electrical engineering and devices for experimental physics”, Moscow, 1985. -P. 134-138. (in Russian)Google Scholar
  36. 241.
    Bandarenko V.M., Aghmetov B.S., Bilenko V.I. Application of hermitian splines in the numerical realization of logic-electric macromodels // Proceedings of AN USSR. Series “A”, Physical-mathematical and technical sciences. -1983. -N 6. -P. 49-52. (in Russian)Google Scholar
  37. 74.
    Basso Ch. Switch-Mode Power Supplies, SPICE Simulations and Practical Designs. -McGraw-Hill Education; 2 edition, 2014. -992p.Google Scholar
  38. 75.
    Guofu N., Shiming Z. Gressler J. Modeling of single-event effects in circuits-hardened high-speed SiGe HBT logic // IEEE Transactions on Nuclear Science. -2001. -Vol. 48, No. 6. -P. 1849-1854.Google Scholar
  39. 2.
    Mehler R.W. Digital Integrated Circuit Design Using Verilog and Systemverilog. -Newnes; 1 edition, 2014. -448p.Google Scholar
  40. 77.
    Alexenko A.G. Fundamentals of microcircuitry. -Ì.: Sov. radio, 1977. -403p. (in Russian)Google Scholar
  41. 78.
    Tsividis Y. Mixed Analog-Digital VLSI Devices and Technology. -Kluwer Academic Publishers, 2002. -300p.Google Scholar
  42. 201.
    Melikyan V., Shahinyan T., Melikyan H. A digital cell macromodel considering radiation affect//Manual of Engineering Academy of Armenia. Vol. 1. No. 3, Yerevan, 2004.-P. 585-588. (in Armenian)Google Scholar
  43. 179.
    Schittenkopf Ch., Deco G., Brauer W. Finit Automata-Models for the Investigation of Dynamical Systems // Information Processing Letters. -1997. -Vol.63, No. 3. -P. 137-141.Google Scholar
  44. 192.
    Longeann D., Richard Shi C.J. Distributed simulation of VLSI circuits via lookahead-free self-adaptive optimistic and conservative synchronization // ACM/IEEE International Conference on Computer Aided Design (ICCAD). -San Jose, 1998. -P. 362.Google Scholar
  45. 163.
    Avril H., Tropper C. Scalable Clustered Time Warp and Logic Simulation // VLSI Design. -1999. -Vol. 9, No. 3. -P. 36-42.Google Scholar
  46. 188.
    Steinman J. SPEEDES: A multiple synchronization environment for parallel discrete-event simulation // Journal on Computer Simulation. -1992. Vol. 2. -P. 251-286.Google Scholar
  47. 233.
    De Man H.J. Mixed-Mode Simulation for MOS-VLSI Why, Where and How? // IEEE International Symposium on Circuits and Systems (ISCAS). -Rome, Italy, 1982. -P. 699-701.Google Scholar
  48. 290.
    Melikyan V.Sh., Mnatsakanyan V.A., Ziad B.Kh. Universal adaptive system of parametrical identification of models of electronic components // Proceedings of international scientific-technical conference “Problems of physical and biomedical electronics”, Kiev, 1996. -P. 68-72. (in Russian)Google Scholar
  49. 1.
    Kang S., Leblebici Y., Kim Ch. CMOS Digital Integrated Circuits Analysis & Design. -McGraw-Hill Education; 4 edition, 2014. -736p.Google Scholar
  50. 291.
    Melikian V., Mnatsakanian V., Ziad B., Airapetian T. VLSI adaptive simulation // 1st International conference on Application of critical Technologies for the needs of society. -Yerevan, 1995. -P. 135.Google Scholar
  51. 293.
    Mano M., Ciletti M. Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog. -Pearson; 6 edition, 2017. -720p.Google Scholar
  52. 294.
    Arustamyan V.E. To the problem of transient processes in PC communication wires. Radioelectronics questions. -1976. -Vol. 14. -P. 26-30. (in Russian)Google Scholar
  53. 292.
    Sigorskiy V.P. Problematic adaptation of computer-aided system design //Computer-aided design in electronics. -Kiev: Technika, 1982. -Vol. 26, -P. 3-12. (in Russian)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vazgen Melikyan
    • 1
  1. 1.Director of Educational DepartmentSynopsys Armenia CJSCYerevanArmenia

Personalised recommendations