Physiologic Lesion Assessment: Fractional Flow Reserve

  • Mohammad Sahebjalal
  • Nicholas CurzenEmail author


Patient outcome following percutaneous coronary intervention (PCI) is predominantly determined by three factors: clinical presentation, comorbidities, and decision-making process before, during, and after the PCI procedure. In order to justify any intervention, there needs to be reason to think that this will result in either (a) an improvement of symptoms, or (b) an improvement in prognosis, or (c) both. For the interventionalist, the skillful application of modern diagnostic tools and reference to the appropriate evidence base can facilitate delivery of optimal patient care. Coronary angiography has been used as a diagnostic tool for more than half a century. However, it is now well established that coronary angiography alone has important flaws and, in particular, can correlate poorly with the functional importance of a stenosis within the epicardial arteries. Further, the evidence base increasingly points to lesion-level ischemia as our target for revascularization. The availability of invasive physiological lesion assessment has revolutionized our ability to define with precision the presence or absence of lesion-level ischemia. The aim of this chapter is to review the evidence for and the expanding role of physiological lesion assessment in our everyday interventional practice.


Coronary blood flow Perfusion pressure Coronary flow reserve Index of microvascular resistance Fractional flow reserve Pressure wire Maximal hyperemia Serial stenoses 


  1. 1.
    Blows LJ, Redwood SR. The pressure wire in practice. Heart. 2007;93(4):419–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Redwood S, Curzen N, Banning A. Oxford textbook of interventional cardiology. Oxford: Oxford University Press; 2010.Google Scholar
  3. 3.
    Kern MJ, Lerman A, Bech JW, De Bruyne B, Eeckhout E, Fearon WF, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation. 2006;114(12):1321–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Hoffman JI, Spaan JA. Pressure-flow relations in coronary circulation. Physiol Rev. 1990;70(2):331–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Jones CJ, Kuo L, Davis MJ, Chilian WM. Distribution and control of coronary microvascular resistance. Adv Exp Med Biol. 1993;346:181–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Spaan JA, Cornelissen AJ, Chan C, Dankelman J, Yin FC. Dynamics of flow, resistance, and intramural vascular volume in canine coronary circulation. Am J Physiol Heart Circ Physiol. 2000;278(2):H383–403.CrossRefPubMedGoogle Scholar
  7. 7.
    De Bruyne B, Hersbach F, Pijls NH, Bartunek J, Bech JW, Heyndrickx GR, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation. 2001;104(20):2401–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaplan JA. Essentials of cardiac anesthesia. Philadelphia, PA: Saunders/Elsevier; 2008. Google Scholar
  9. 9.
    Longman K, Curzen N. Should ischemia be the main target in selecting a percutaneous coronary intervention strategy? Expert Rev Cardiovasc Ther. 2013;11(8):1051–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Fearon WF, Shah M, Ng M, Brinton T, Wilson A, Tremmel JA, et al. Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2008;51(5):560–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van't Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J Am Coll Cardiol. 2007;49(21):2105–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360(3):213-224.Google Scholar
  13. 13.
    De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991–1001.CrossRefPubMedGoogle Scholar
  14. 14.
    Curzen N, Rana O, Nicholas Z, Golledge P, Zaman A, Oldroyd K, et al. Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain?: the RIPCORD study. Circ Cardiovasc Interv. 2014;7(2):248–55.CrossRefPubMedGoogle Scholar
  15. 15.
    Barbato E, Toth G, Johnson N, et al. A prospective natural history study of coronary atherosclerosis using fractional flow reserve. J Am Coll Cardiol. 2016;68:2247–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Redwood S, Curzen N, Thomas MR, editors. Coronary physiology in clinical practice. Chapter 9. In: Oxford Textbook Of Interventional Cardiology. Oxford: Oxford University Press.Google Scholar
  17. 17.
    Jeremias A, Filardo SD, Whitbourn RJ, Kernoff RS, Yeung AC, Fitzgerald PJ, et al. Effects of intravenous and intracoronary adenosine 5′-triphosphate as compared with adenosine on coronary flow and pressure dynamics. Circulation. 2000;101(3):318–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Niccoli G, Banning AP. Heparin dose during percutaneous coronary intervention: how low dare we go? Heart. 2002;88(4):331–4.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Wolfrum M, Fahrni G, de Maria GL, Knapp G, Curzen N, Kharbanda RK, et al. Impact of impaired fractional flow reserve after coronary interventions on outcomes: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2016;16(1):177.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Daniels DV, van't Veer M, Pijls NH, van der Horst A, Yong AS, De Bruyne B, et al. The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease. JACC Cardiovasc Interv. 2012;5(10):1021–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Ntalianis A, Sels J, Davidavicius G, et al. Fractional flow reserve for the assessment of nonculprit coronary artery Stenoses in patients with acute myocardial infarction. J Am Coll Cardiol Interv. 2010;3:1274–81.CrossRefGoogle Scholar
  23. 23.
    Engstrom T, Kelbaek H, Helqvist S, Hofsten DE, Klovgaard L, Holmvang L, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3-PRIMULTI): an open-label, randomised controlled trial. Lancet. 2015;386(9994):665–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Ahmed N, Layland J, Carrick D, Petrie MC, McEntegart M, Eteiba H, et al. Safety of guidewire-based measurement of fractional flow reserve and the index of microvascular resistance using intravenous adenosine in patients with acute or recent myocardial infarction. Int J Cardiol. 2016;202:305–10.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, et al. Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS-NSTEMI randomized trial. Eur Heart J. 2015;36(2):100–11.CrossRefPubMedGoogle Scholar
  26. 26.
    Sant’Anna FM, Silva EE, Batista LA, Ventura FM, Barrozo CA, Pijls NH. Influence of routine assessment of fractional flow reserve on decision making during coronary interventions. Am J Cardiol. 2007;99(4):504–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Baptista SB, Raposo L, Santos L, et al. Impact of routine fractional flow reserve evaluation during coronary angiography on management strategy and clinical outcome: one-year results of the POST-IT. Circ Cardiovasc Interv. 2016;9(7):e003288.CrossRefPubMedGoogle Scholar
  28. 28.
    Nakamura M, Yamagishi M, Ueno T, et al. Modification of treatment strategy after FFR measurement: CVIT-DEFER registry. Cardiovasc Interv Ther. 2015;30(1):12–21.CrossRefPubMedGoogle Scholar
  29. 29.
    Van Belle E, Rioufol G, Pouillot C, et al. Outcome impact of coronary revascularization strategy reclassification with fractional flow reserve at time of diagnostic angiography: insights from a large French multicenter fractional flow reserve registry. Circulation. 2014;129(2):173–85.CrossRefPubMedGoogle Scholar
  30. 30.
    Tonino PA, Fearon WF, De Bruyne B, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55(25):2816–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Toth G, Hamilos M, Pyxaras S, et al. Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart J. 2014;35(40):2831–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Coronary Research GroupUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
  2. 2.Faculty of MedicineUniversity of SouthamptonSouthamptonUK

Personalised recommendations