Advertisement

Principles of Flow Assessment

  • Ahmed A. Alsaileek
  • Fatima Samad
  • A. Jamil Tajik
Chapter

Abstract

Hemodynamic science describes the physics and physiology of blood flow through the circulatory system, integrating the relationship of pressure, vascular resistance to flow, and volume flow rate in the cardiovascular system. Doppler echocardiography forms the basis of assessing hemodynamics and has replaced invasive cardiac catheterization for assessing hemodynamics for most clinical purposes. In this chapter, we discuss in great detail the Doppler principle, the hydraulic equation of flow, the continuity equation (law of conservation of mass), the proximal isovelocity surface area method, and the Bernoulli equation. In particular, we have focused on the clinical utility of these equations to assess various hemodynamics of the cardiovascular system, such as calculating the stroke volume, cardiac output, flows through the various cardiac valves, valve areas, regurgitant volumes, and cardiac shunts.

Keywords

Flow assessment Mitral regurgitation Mitral stenosis Aortic regurgitation Aortic stenosis 

References

  1. 1.
    Callahan MJ, Tajik AJ, Su-Fan Q, Bove AA. Validation of instantaneous pressure gradients measured by continuous-wave Doppler in experimentally induced aortic stenosis. Am J Cardiol. 1985;56(15):989–93.CrossRefGoogle Scholar
  2. 2.
    Currie PJ, Seward JB, Chan KL, Fyfe DA, Hagler DJ, Mair DD, et al. Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol. 1985;6(4):750–6.CrossRefGoogle Scholar
  3. 3.
    Burstow DJ, Nishimura RA, Bailey KR, Reeder GS, Holmes DR Jr, Seward JB, Tajik AJ. Continuous wave Doppler echocardiographic measurement of prosthetic valve gradients. A simultaneous Doppler-catheter correlative study. Circulation. 1989;80(3):504–14.CrossRefGoogle Scholar
  4. 4.
    Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation. 1984;70:425–31.CrossRefGoogle Scholar
  5. 5.
    Stewart WJ, Jiang L, Mich R, Pandian N, Guerrero JL, Weyman AE. Variable effects of changes in flow rate through the aortic, pulmonary and mitral valves on valve area and flow velocity: impact on quantitative Doppler flow calculations. J Am Coll Cardiol. 1985;6:653–62.CrossRefGoogle Scholar
  6. 6.
    Zoghbi WA, Quinones MA. Determination of cardiac output by Doppler echocardiography: a critical appraisal. Herz. 1986;11(5):258–68.PubMedGoogle Scholar
  7. 7.
    Maslow A, Comunale ME, Haering JM, Watkins J. Pulsed wave Doppler measurement of cardiac output from the right ventricular outflow tract. Anesth Analg. 1996;83:466–71.CrossRefGoogle Scholar
  8. 8.
    Karp K, Teien D, Eriksson P. Doppler echocardiographic assessment of the valve area in patients with atrioventricular valve stenosis by application of the continuity equation. J Intern Med. 1989;225:261–6.CrossRefGoogle Scholar
  9. 9.
    Nakatani S, Masuyama T, Kodama K, Kitabatake A, Fujii K, Kamada T, et al. Value and limitations of Doppler echocardiography in the quantification of stenotic mitral valve area: comparison of the pressure half-time and the continuity equation methods. Circulation. 1988;77:78–85.CrossRefGoogle Scholar
  10. 10.
    Otto CM, Pearlman AS, Gardner CL, Enomoto DM, Togo T, Tsuboi H, Ivey TD. Experimental validation of Doppler echocardiographic measurement of volume flow through the stenotic aortic valve. Circulation. 1988;78:435–41.CrossRefGoogle Scholar
  11. 11.
    Skjaerpe T, Hegrenaes L, Hatle L. Noninvasive estimation of valve area in patients with aortic stenosis by Doppler ultrasound and two-dimensional echocardiography. Circulation. 1985;72:810–8.CrossRefGoogle Scholar
  12. 12.
    Miyatake K, Okamoto M, Kinoshita N, Ohta M, Kozuka T, Sakakibara H, Nimura Y. Evaluation of tricuspid regurgitation by pulsed Doppler and two-dimensional echocardiography. Circulation. 1982;66(4):777–84.CrossRefGoogle Scholar
  13. 13.
    Thomas L, Foster E, Hoffman JI, Schiller NB. Prospective validation of an echocardiographic index for determining the severity of chronic mitral regurgitation. Am J Cardiol. 2002;90:607–12.CrossRefGoogle Scholar
  14. 14.
    Enriquez-Sarano M, Miller FA Jr, Hayes SN, Bailey KR, Tajik AJ, Seward JB. Effective mitral regurgitant orifi ce area: clinical use and pitfalls of the proximal isovelocity surface area method. J Am Coll Cardiol. 1995;25(3):703–9.CrossRefGoogle Scholar
  15. 15.
    Fehske W, Omran H, Manz M, Köhler J, Hagendorff A, Lüderitz B. Color-coded Doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am J Cardiol. 1994;73:268–74.CrossRefGoogle Scholar
  16. 16.
    Hall SA, Brickner ME, Willett DL, Irani WN, Afridi I, Grayburn PA. Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta [see comment]. Circulation. 1997;95:636–42.CrossRefGoogle Scholar
  17. 17.
    Helmcke F, Nanda NC, Hsiung MC, Soto B, Adey CK, Goyal RG, Gatewood RP Jr. Color Doppler assessment of mitral regurgitation with orthogonal planes. Circulation. 1987;75:175–83.CrossRefGoogle Scholar
  18. 18.
    Utsunomiya T, Doshi R, Patel D, Nguyen D, Mehta K, Gardin JM. Regurgitant volume estimation in patients with mitral regurgitation: initial studies using color Doppler ‘proximal isovelocity surface area’ method. Echocardiography. 1992;9:63–70.CrossRefGoogle Scholar
  19. 19.
    Stevenson JG. Two-dimensional color Doppler estimation of the severity of atrioventricular valve regurgitation: important effects of instrument gain setting, pulse repetition frequency, and carrier frequency. J Am Soc Echocardiogr. 1989;2(1):1–10.CrossRefGoogle Scholar
  20. 20.
    Cape EG, Yoganathan AP, Weyman AE, Levine RA. Adjacent solid boundaries alter the size of regurgitant jets on Doppler color flow maps. J Am Coll Cardiol. 1991;17:1094–102.CrossRefGoogle Scholar
  21. 21.
    Skjaerpe T, Hatle L. Diagnosis of tricuspid regurgitation. Sensitivity of Doppler ultrasound compared with contrast echocardiography. Eur Heart J. 1985;6:429–36.CrossRefGoogle Scholar
  22. 22.
    Tribouilloy CM, Enriquez-Sarano M, Fett SL, Bailey KR, Seward JB, Tajik AJ. Application of the proximal flow convergence method to calculate the effective regurgitant orifice area in aortic regurgitation. J Am Coll Cardiol. 1998;32:1032–9.CrossRefGoogle Scholar
  23. 23.
    Shiota T, Jones M, Yamada I, Heinrich RS, Ishii M, Sinclair B, Yoganathan AP, Sahn DJ. Evaluation of aortic regurgitation with digitally determined color Doppler-imaged flow convergence acceleration: a quantitative study in sheep. J Am Coll Cardiol. 1996;27:203–10.CrossRefGoogle Scholar
  24. 24.
    Quere JP, Tribouilloy C, Enriquez-Sarano M. Vena contracta width measurement: theoretic basis and usefulness in the assessment of valvular regurgitation severity. Curr Cardiol Rep. 2003;5:110–5.CrossRefGoogle Scholar
  25. 25.
    Tribouilloy CM, Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ. Assessment of severity of aortic regurgitation using the width of the vena contracta: a clinical color Doppler imaging study. Circulation. 2000;102:558–64.CrossRefGoogle Scholar
  26. 26.
    Willett DL, Hall SA, Jessen ME, Wait MA, Grayburn PA. Assessment of aortic regurgitation by transesophageal color Doppler imaging of the vena contracta: validation against an intraoperative aortic flow probe. J Am Coll Cardiol. 2001;37:1450–5.CrossRefGoogle Scholar
  27. 27.
    Nozaki S, Mizushige K, Taminato T, Obayashi N, Matsuo H. New index for grading the severity of aortic regurgitation based on the cross-sectional area of vena contracta measured by color Doppler flow mapping. Circ J. 2003;67:243–7.CrossRefGoogle Scholar
  28. 28.
    Smith MD, Grayburn PA, Spain MG, DeMaria AN. Observer variability in the quantitation of Doppler color flow jet areas for mitral and aortic regurgitation. J Am Coll Cardiol. 1988;11:579–84.CrossRefGoogle Scholar
  29. 29.
    Reimold SC, Thomas JD, Lee RT. Relation between Doppler color flow variables and invasively determined jet variables in patients with aortic regurgitation. J Am Coll Cardiol. 1992;20:1143–8.CrossRefGoogle Scholar
  30. 30.
    Taylor AL, Eichhorn EJ, Brickner ME, Eberhart RC, Grayburn PA. Aortic valve morphology: an important in vitro determinant of proximal regurgitant jet width by Doppler color flow mapping. J Am Coll Cardiol. 1990;16(2):405–12.CrossRefGoogle Scholar
  31. 31.
    Grayburn PA, Handshoe R, Smith MD, Harrison MR, DeMaria AN. Quantitative assessment of the hemodynamic consequences of aortic regurgitation by means of continuous wave Doppler recordings. J Am Coll Cardiol. 1987;10(1):135–41.CrossRefGoogle Scholar
  32. 32.
    Labovitz AJ, Ferrara RP, Kern MJ, Bryg RJ, Mrosek DG, Williams GA. Quantitative evaluation of aortic insufficiency by continuous wave Doppler echocardiography. J Am Coll Cardiol. 1986;8(6):1341–7.CrossRefGoogle Scholar
  33. 33.
    Griffin BP, Flachskampf FA, Siu S, Weyman AE, Thomas JD. The effects of regurgitant orifice size, chamber compliance, and systemic vascular resistance on aortic regurgitant velocity slope and pressure half-time. Am Heart J. 1991;122(4 Pt 1):1049–56.CrossRefGoogle Scholar
  34. 34.
    Quinones MA, Young JB, Waggoner AD, Ostojic MC, Ribeiro LG, Miller RR. Assessment of pulsed Doppler echocardiography in detection and quantification of aortic and mitral regurgitation. Br Heart J. 1980;44:612–20.CrossRefGoogle Scholar
  35. 35.
    Rodriguez L, Thomas JD, Monterroso V, Weyman AE, Harrigan P, Mueller LN, Levine RA. Validation of the proximal flow convergence method. Calculation of orifice area in patients with mitral stenosis [see comment]. Circulation. 1993;88(3):1157–65.CrossRefGoogle Scholar
  36. 36.
    Deng YB, Matsumoto M, Wang XF, Liu L, Takizawa S, Takekoshi N, Shimizu T, Mishima K. Estimation of mitral valve area in patients with mitral stenosis by the flow convergence region method: selection of aliasing velocity. J Am Coll Cardiol. 1994;24:683–9.CrossRefGoogle Scholar
  37. 37.
    Rifkin RD, Harper K, Tighe D. Comparison of proximal isovelocity surface area method with pressure half-time and planimetry in evaluation of mitral stenosis. J Am Coll Cardiol. 1995;26:458–65.CrossRefGoogle Scholar
  38. 38.
    Degertekin M, Basaran Y, Gencbay M, Yaymaci B, Dindar I, Turan F. Validation of flow convergence region method in assessing mitral valve area in the course of transthoracic and transesophageal echocardiographic studies. Am Heart J. 1998;135(2 Pt 1):207–14.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed A. Alsaileek
    • 1
    • 2
  • Fatima Samad
    • 3
  • A. Jamil Tajik
    • 3
  1. 1.King Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
  2. 2.Adult Cardiology/Cardiac ImagingKing Abdulaziz Cardiac Center, National Guard Health AffairsRiyadhSaudi Arabia
  3. 3.St. Luke’s Medical Center, Aurora Cardiovascular ServicesMilwaukeeUSA

Personalised recommendations