Experimental Study of Self-Assembling Systems Characterized by Directional Interactions

Chapter

Abstract

Self-assembly in colloidal model systems is no different than self-assembly in atomic or molecular systems, other than that model systems are designed for the easy inspection of their dynamics and resulting structures. In this chapter we will give a concise overview of what properties an experimental self-assembling system should ideally have for convenient characterization and how this has been realized so far, with special emphasis on the real-space and real-time microscopic characterization of the behaviour on non-isotropically interacting colloids, usually referred to as patchy particles. We will also discuss what properties can be used to steer the self-assembly of such units towards target structures.

References

  1. 1.
    Van Blaaderen A, Imhof A, Hage W, Vrij A. Three-dimensional imaging of submicrometer colloidal particles in concentrated suspensions using confocal scanning laser microscopy. Langmuir. 1992;8(6):1514–7.CrossRefGoogle Scholar
  2. 2.
    Aarts DGAL. Direct visual observation of thermal capillary waves. Science. 2004;304(5672):847–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Zaccarelli E. Colloidal gels: equilibrium and non-equilibrium routes. J Phys Condens Matter. 2007;19(32):323101.CrossRefGoogle Scholar
  4. 4.
    Pusey PN, van Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature. 1986;320(6060):340–2.CrossRefGoogle Scholar
  5. 5.
    Yethiraj A, van Blaaderen A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature. 2003;421:513–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Palberg T. Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. J Phys Condens Matter. 2014;26(33):333101.PubMedCrossRefGoogle Scholar
  7. 7.
    Perrin J. Atoms. London: Constable; 1916.Google Scholar
  8. 8.
    Sullivan MT, Zhao K, Hollingsworth AD, Austin RH, Russel WB, Chaikin PM. An electric bottle for colloids. Phys Rev Lett. 2006;96(1):015703.PubMedCrossRefGoogle Scholar
  9. 9.
    Leunissen ME, Sullivan MT, Chaikin PM, van Blaaderen A. Concentrating colloids with electric field gradients. I. Particle transport and growth mechanism of hard-sphere-like crystals in an electric bottle. J Chem Phys. 2008;128(16):164508.Google Scholar
  10. 10.
    Leunissen ME, van Blaaderen A. Concentrating colloids with electric field gradients. II. Phase transitions and crystal buckling of long-ranged repulsive charged spheres in an electric bottle. J Chem Phys. 2008;128(16):164509.Google Scholar
  11. 11.
    Hermes M, Vermolen ECM, Leunissen ME, Vossen DLJ, van Oostrum PDJ, Dijkstra M, van Blaaderen A. Nucleation of colloidal crystals on configurable seed structures. Soft Matter. 2011;7(10):4623.CrossRefGoogle Scholar
  12. 12.
    Hynninen A-P, Dijkstra M. Phase diagram of dipolar hard and soft spheres: manipulation of colloidal crystal structures by an external field. Phys Rev Lett. 2005;94(13).Google Scholar
  13. 13.
    Smallenburg F, Vutukuri HR, Imhof A, van Blaaderen A, Dijkstra M. Self-assembly of colloidal particles into strings in a homogeneous external electric or magnetic field. J Phys Condens Matter. 2012;24(46):464113.PubMedCrossRefGoogle Scholar
  14. 14.
    Yethiraj A. Tunable colloids: control of colloidal phase transitions with tunable interactions. Soft Matter. 2007;3(9):1099.CrossRefGoogle Scholar
  15. 15.
    Frenkel D. Order through disorder. Nat Mater. 2015;14:9–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Pawar AB, Kretzschmar I. Fabrication, assembly, and application of patchy particles. Macromol Rapid Commun. 2010;31:150.PubMedCrossRefGoogle Scholar
  17. 17.
    Bianchi E, Blaak R, Likos CN. Patchy colloids: state of the art and perspectives. Phys Chem Chem Phys. 2011;13:6397–410.PubMedCrossRefGoogle Scholar
  18. 18.
    Yi G-R, Pine DJ, Sacanna S. Recent progress on patchy colloids and their self-assembly. J Phys Condens Matter. 2013;25(19):193101.PubMedCrossRefGoogle Scholar
  19. 19.
    Duguet É, Hubert C, Chomette C, Perro A, Ravaine S. Patchy colloidal particles for programmed self-assembly. C R Chim. 2016;19(1–2):173–82.CrossRefGoogle Scholar
  20. 20.
    Bianchi E, Capone B, Coluzza I, Rovigatti L, van Oostrum PDJ. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Phys. Chem. Chem. Phys. 2017;19:19847–19868.PubMedCrossRefGoogle Scholar
  21. 21.
    Rest C, Kandanelli R, Fernández G. Strategies to create hierarchical self-assembled structures via cooperative non-covalent interactions. Chem Soc Rev. 2015;44(8):2543–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Gârlea IC, Bianchi E, Capone B, Rovigatti L, Likos CN. Hierarchical self-organization of soft patchy nanoparticles into morphologically diverse aggregates. Curr Opin Colloid Interface Sci. 2017;30:1–7.CrossRefGoogle Scholar
  23. 23.
    Casagrande C, Fabre P, Raphaël E, Veyssié M. “Janus Beads”: realization and behaviour at water/oil interfaces. EPL. 1989;9(3):251.Google Scholar
  24. 24.
    Lattuada M, Alan Hatton T. Synthesis, properties and applications of Janus nanoparticles. Nano Today. 2011;6(3):286–308.CrossRefGoogle Scholar
  25. 25.
    Walther A, Müller AHE. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev. 2013;113:5194–261.PubMedCrossRefGoogle Scholar
  26. 26.
    Pawar AB, Kretzschmar I. Multifunctional patchy particles by glancing angle deposition. Langmuir. 2009;25(16):9057–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen Q, Bae SC, Granick S. Directed self-assembly of a colloidal kagome lattice. Nature. 2011;469:381–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Hong L, Cacciuto A, Luijten E, Granick S. Clusters of charged janus spheres. Nano Lett. 2006;6(11):2510–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen Q, Diesel E, Whitmer JK, Bae SC, Luijten E, Granick S. Triblock colloids for directed self-assembly. J Am Chem Soc. 2011;133(20):7725–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Pawar AB, Kretzschmar I. Patchy particles by glancing angle deposition. Langmuir. 2008;24:355–8.PubMedCrossRefGoogle Scholar
  31. 31.
    He Z, Kretzschmar I. Template-assisted fabrication of patchy particles with uniform patches. Langmuir. 2012;28(26):9915–9.PubMedCrossRefGoogle Scholar
  32. 32.
    McConnell MD, Kraeutler MJ, Yang S, Composto RJ. Patchy and multiregion janus particles with tunable optical properties. Nano Lett. 2010;10(2):603–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Lin C-C, Liao C-W, Chao Y-C, Kuo C. Fabrication and characterization of asymmetric janus and ternary particles. ACS Appl Mater Interfaces. 2010;2(11):3185–91.PubMedCrossRefGoogle Scholar
  34. 34.
    van Oostrum PDJ, Hejazifar M, Niedermayer C, Reimhult E. Simple method for the synthesis of inverse patchy colloids. J Phys Condens Matter. 2015;27(23):234105.PubMedCrossRefGoogle Scholar
  35. 35.
    Ding T, Tian Y, Liang K, Clays K, Song K, Yang G, Tung C-H. Anisotropic oxygen plasma etching of colloidal particles in electrospun fibers. Chem Commun (Camb). 2011;47(8):2429–31.CrossRefGoogle Scholar
  36. 36.
    Takahara YK, Ikeda S, Ishino S, Tachi K, Ikeue K, Sakata T, Hasegawa T, Mori H, Matsumura M, Ohtani B. Asymmetrically modified silica particles: a simple particulate surfactant for stabilization of oil droplets in water. J Am Chem Soc. 2005;127(17):6271–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Hong L, Jiang S, Granick S. Simple method to produce janus colloidal particles in large quantity. Langmuir. 2006;22(23):9495–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Böker A, He J, Emrick T, Russell TP. Self-assembly of nanoparticles at interfaces. Soft Matter. 2007;3(10):1231.CrossRefGoogle Scholar
  39. 39.
    Jiang S, Granick S. Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir. 2008;24(6):2438–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Perro A, Meunier F, Schmitt V, Ravaine S. Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Colloids Surf A Physicochem Eng Asp. 2009;332(1):57–62.CrossRefGoogle Scholar
  41. 41.
    Petit L, Manaud JP, Mingotaud C, Ravaine S, Duguet E. Sub-micrometer silica spheres dissymmetrically decorated with gold nanoclusters. Mater Lett. 2001;51(6):478–84.CrossRefGoogle Scholar
  42. 42.
    Sabapathy M, Shelke Y, Basavaraj MG, Mani E. Synthesis of non-spherical patchy particles at fluid–fluid interfaces via differential deformation and their self-assembly. Soft Matter. 2016;12(27):5950–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Vilain C, Goettmann F, Moores A, Le Floch P, Sanchez C. Study of metal nanoparticles stabilised by mixed ligand shell: a striking blue shift of the surface-plasmon band evidencing the formation of Janus nanoparticles. J Mater Chem. 2007;17:3509–14.CrossRefGoogle Scholar
  44. 44.
    Andala DM, Shin SHR, Lee H-Y, Bishop KJM. Templated synthesis of amphiphilic nanoparticles at the liquid–liquid interface. ACS Nano. 2012;6(2):1044–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Manoharan VN. Dense packing and symmetry in small clusters of microspheres. Science. 2003;301(5632):483–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L, Hollingsworth AD, Weck M, Pine DJ. Colloids with valence and specific directional bonding. Nature. 2012;491(7422):51–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang Y, Hollingsworth AD, Kyung Yang S, Patel S, Pine DJ, Weck M. Patchy particle self-assembly via metal coordination. J Am Chem Soc. 2013;135(38):14064–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Kraft DJ, Hilhorst J, Heinen MAP, Hoogenraad MJ, Luigjes B, Kegel WK. Patchy polymer colloids with tunable anisotropy dimensions. J Phys Chem B. 2011;115(22):7175–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Désert A, Chaduc I, Fouilloux S, Taveau J-C, Lambert O, Lansalot M, Bourgeat-Lami E, Thill A, Spalla O, Ravaine S, Duguet E. High-yield preparation of polystyrene/silica clusters of controlled morphology. Polym Chem. 2012;3(5):1130.CrossRefGoogle Scholar
  50. 50.
    Désert A, Hubert C, Fu Z, Moulet L, Majimel J, Barboteau P, Thill A, Lansalot M, Bourgeat-Lami E, Duguet E, Ravaine S. Synthesis and site-specific functionalization of tetravalent, hexavalent, and dodecavalent silica particles. Angew Chem Int Ed. 2013;52(42):11068–72.CrossRefGoogle Scholar
  51. 51.
    Kraft DJ, Ni R, Smallenburg F, Hermes M, Yoon K, Weitz DA, van Blaaderen A, Groenewold J, Dijkstra M, Kegel WK. Surface roughness directed self-assembly of patchy particles into colloidal micelles. Proc Natl Acad Sci. 2012;109(27):10787–92.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sacanna S, Irvine WTM, Chaikin PM, Pine DJ. Lock and key colloids. Nature. 2010;464(7288):575–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Mely Ramírez L, Milner ST, Snyder CE, Colby RH, Velegol D. Controlled flats on spherical polymer colloids. Langmuir. 2010;26(10):7644–9.CrossRefGoogle Scholar
  54. 54.
    Ramírez LM, Smith AS, Unal DB, Colby RH, Velegol D. Self-assembly of doublets from flattened polymer colloids. Langmuir. 2012;28(9):4086–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Ramírez LM, Michaelis CA, Rosado JE, Pabón EK, Colby RH, Velegol D. Polloidal chains from self-assembly of flattened particles. Langmuir. 2013;29(33):10340–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Cayre O, Paunov VN, Velev OD. Fabrication of asymmetrically coated colloid particles by microcontact printing techniques. J Mater Chem. 2003;13(10):2445.CrossRefGoogle Scholar
  57. 57.
    Jiang S, Granick S. A simple method to produce trivalent colloidal particles. Langmuir. 2009;25(16):8915–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Seidel P, Ravoo BJ. Preparation of microscale polymer janus particles by sandwich microcontact printing. Macromol Chem Phys. 2016;217(13):1467–72.CrossRefGoogle Scholar
  59. 59.
    Gangwal S, Cayre OJ, Velev OD. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. Langmuir. 2008;24:13312–20.PubMedCrossRefGoogle Scholar
  60. 60.
    Gangwal S, Cayre OJ, Bazant MZ, Velev OD. Induced-charge electrophoresis of metallodielectric particles. Phys Rev Lett. 2008.100:058302.PubMedCrossRefGoogle Scholar
  61. 61.
    Smoukov SK, Gangwal S, Marquez M, Velev OD. Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter. 2009;5:1285–92.CrossRefGoogle Scholar
  62. 62.
    Gangwal S, Pawar A, Kretzschmar I, Velev OD. Programmed assembly of metallodielectric patchy particles in external AC electric fields. Soft Matter. 2010;6:1413–8.CrossRefGoogle Scholar
  63. 63.
    Kretzschmar I, Song JH. Surface-anisotropic spherical colloids in geometric and field confinement. Curr Opin Colloid Interface Sci. 2011;16:84–95.CrossRefGoogle Scholar
  64. 64.
    Rossi L, Sacanna S, Irvine WTM, Chaikin PM, Pine DJ, Philipse AP. Cubic crystals from cubic colloids. Soft Matter. 2011;7:4139–42.CrossRefGoogle Scholar
  65. 65.
    Champion JA, Katare YK, Mitragotri S. Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci. 2007;104(29):11901–4.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Vutukuri HR, Imhof A, van Blaaderen A. Fabrication of polyhedral particles from spherical colloids and their self-assembly into rotator phases. Angew Chem Int Ed. 2014;53(50):13830–4.CrossRefGoogle Scholar
  67. 67.
    Barry E, Dogic Z. Entropy driven self-assembly of nonamphiphilic colloidal membranes. Proc Natl Acad Sci. 2010;107(23):10348–53.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Qi W, de Graaf J, Qiao F, Marras S, Manna L, Dijkstra M. Ordered two-dimensional superstructures of colloidal octapod-shaped nanocrystals on flat substrates. Nano Lett. 2012;12(10):5299–303. PMID: 22938387.PubMedCrossRefGoogle Scholar
  69. 69.
    Vutukuri HR, Smallenburg F, Badaire S, Imhof A, Dijkstra M, van Blaaderen A. An experimental and simulation study on the self-assembly of colloidal cubes in external electric fields. Soft Matter. 2014;10:9110–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Bharti B, Velev OD. Assembly of reconfigurable colloidal structures by multi-directional field-induced interactions. Langmuir. 2015;31:7897–908.PubMedCrossRefGoogle Scholar
  71. 71.
    Ristenpart WD, Aksay IA, Saville DA. Electrically guided assembly of planar superlattices in binary colloidal suspensions. Phys Rev Lett. 2003;90:128303.PubMedCrossRefGoogle Scholar
  72. 72.
    Khalil KS, Sagastegui A, Li Y, Tahir MA, Socolar JES, Wiley BJ, Yellen BB. Binary colloidal structures assembled through Ising interactions. Nat Commun. 2012;3:794.PubMedCrossRefGoogle Scholar
  73. 73.
    Nych A, Ognysta U, Škarabot M, Ravnik M, žumer S, Muševič I. Assembly and control of 3D nematic dipolar colloidal crystals. Nat Commun. 2013;4:1489.Google Scholar
  74. 74.
    Mangold K, Leiderer P, Bechinger C. Phase transitions of colloidal monolayers in periodic pinning arrays. Phys Rev Lett. 2003;90:158302.PubMedCrossRefGoogle Scholar
  75. 75.
    Mikhael J, Roth J, Helden L, Bechinger C. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature. 2008;454:501–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Demirors AF, Pillai PP, Kowalczy B, Grzybowski M. Colloidal assembly directed by virtual magnetic moulds. Nature. 2013;503:99–103.PubMedCrossRefGoogle Scholar
  77. 77.
    Bianchi E, Kahl G, Likos CN. Inverse patchy colloids: from microscopic description to mesoscopic coarse-graining. Soft Matter. 2011;7(18):8313.CrossRefGoogle Scholar
  78. 78.
    Bianchi E, van Oostrum PDJ, Likos CN, Kahl G. Inverse patchy colloids: synthesis, modeling and self-organization. Curr Opin Colloid Interface Sci. 2017;30:8–15.CrossRefGoogle Scholar
  79. 79.
    Denkov N, Velev O, Kralchevski P, Ivanov I, Yoshimura H, Nagayama K. Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir. 1992;8(12):3183–90.CrossRefGoogle Scholar
  80. 80.
    Choueiri RM, Galati E, Thérien-Aubin H, Klinkova A, Larin EM, Querejeta-Fernández A, Han L, Xin HL, Gang O, Zhulina EB, Rubinstein M, Kumacheva E. Surface patterning of nanoparticles with polymer patches. Nature. 2016;538(7623):79–83.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Capone B, Coluzza I, LoVerso F, Likos CN, Blaak R. Telechelic star polymers as self-assembling units from the molecular to the macroscopic scale. Phys Rev Lett. 2012;109(23):238301.PubMedCrossRefGoogle Scholar
  82. 82.
    Alward DB, Kinning DJ, Thomas EL, Fetters LJ. Effect of arm number and arm molecular weight on the solid-state morphology of poly(styrene-isoprene) star block copolymers. Macromolecules. 1986;19(1):215–24.CrossRefGoogle Scholar
  83. 83.
    Thomas EL, Alward DB, Kinning DJ, Martin DC, Handlin DL, Fetters LJ. Ordered bicontinuous double-diamond structure of star block copolymers: a new equilibrium microdomain morphology. Macromolecules. 1986;19(8):2197–202.CrossRefGoogle Scholar
  84. 84.
    Zhao Y, Berger R, Landfester K, Crespy D. Polymer patchy colloids with sticky patches. Polym Chem. 2014;5(2):365–71.CrossRefGoogle Scholar
  85. 85.
    Nikoubashman A, Lee VE, Sosa C, Prud’homme RK, Priestley RD, Panagiotopoulos AZ. Directed assembly of soft colloids through rapid solvent exchange. ACS Nano. 2016;10(1):1425–33.PubMedCrossRefGoogle Scholar
  86. 86.
    Sosa C, Liu R, Tang C, Qu F, Niu S, Bazant MZ, Prud’homme RK, Priestley RD. Soft multifaced and patchy colloids by constrained volume self-assembly. Macromolecules. 2016;49(9):3580–5.CrossRefGoogle Scholar
  87. 87.
    Li N, Panagiotopoulos AZ, Nikoubashman A. Structured nanoparticles from the self-assembly of polymer blends through rapid solvent exchange. Langmuir. 2017;33:6021–28.PubMedCrossRefGoogle Scholar
  88. 88.
    Higuchi T, Tajima A, Yabu H, Shimomura M. Spontaneous formation of polymer nanoparticles with inner micro-phase separation structures. Soft Matter. 2008;4:1302–5.CrossRefGoogle Scholar
  89. 89.
    Cheng L, Zhang G, Zhu L, Chen D, Jiang M. Nanoscale tubular and sheetlike superstructures from hierarchical self-assembly of polymeric Janus particles. Angew Chem Int Ed. 2008;47(52):10171–4.CrossRefGoogle Scholar
  90. 90.
    Gröschel AH, Walther A, Löbling TI, Schmelz J, Hanisch A, Schmalz H, Müller AHE. Facile, solution-based synthesis of soft, nanoscale janus particles with tunable janus balance. J Am Chem Soc. 2012;134(33):13850–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Hanisch A, Gröschel AH, Förtsch M, Drechsler M, Jinnai H, Ruhland TM, Schacher FH, Müller AHE. Counterion-mediated hierarchical self-assembly of an ABC Miktoarm Star terpolymer. ACS Nano. 2013;7(5):4030–41. PMID: 23544750.PubMedCrossRefGoogle Scholar
  92. 92.
    Gröschel AH, Walther A, Löbling TI, Schacher FH, Schmalz H, Müller AHE. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature. 2013;503(7475):247–51.PubMedCrossRefGoogle Scholar
  93. 93.
    Ke Y, Ong LL, Shih WM, Yin P. Three-dimensional structures self-assembled from DNA bricks. Science. 2012;338(6111):1177–83.PubMedCrossRefGoogle Scholar
  94. 94.
    Cademartiri L, Bishop KJM. Programmable self-assembly. Nat Mater. 2015;14(1):2–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Lawrence DS, Jiang T, Levett M. Self-assembling supramolecular complexes. Chem Rev. 1995;95(6):2229–60.CrossRefGoogle Scholar
  96. 96.
    Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6(1):41–75.PubMedCrossRefGoogle Scholar
  97. 97.
    Coluzza I, Muller HG, Frenkel D. Designing refoldable model molecules. Phys Rev E. 2003;68(4):046703.CrossRefGoogle Scholar
  98. 98.
    Coluzza I. A coarse-grained approach to protein design: Learning from design to understand folding. PLoS One. 2011;6(7):e20853.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Coluzza I, Dellago C. The configurational space of colloidal patchy polymers with heterogeneous sequences. J Phys Condens Matter. 2012;24(28):284111.PubMedCrossRefGoogle Scholar
  100. 100.
    Coluzza I. Computational protein design: a review. J Phys Condens Matter. 2017;29(14):143001.PubMedCrossRefGoogle Scholar
  101. 101.
    Coluzza I, van Oostrum PDJ, Capone B, Reimhult E, Dellago C. Design and folding of colloidal patchy polymers. Soft Matter. 2013;9(3):938–44.CrossRefGoogle Scholar
  102. 102.
    Coluzza I, van Oostrum PDJ, Capone B, Reimhult E, Dellago C. Sequence controlled self-knotting colloidal patchy polymers. Phys Rev Lett. 2013;110(7):075501.PubMedCrossRefGoogle Scholar
  103. 103.
    Goubault C, Leal-Calderon F, Viovy JL, Bibette J. Self-assembled magnetic nanowires made irreversible by polymer bridging. Langmuir. 2005;21(9):3725–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Vutukuri HR, Demirors AF, Peng B, van Oostrum PDJ, Imhof A, van Blaaderen A. Colloidal analogues of charged and uncharged polymer chains with tunable stiffness. Angew Chem Int Ed. 2012;51(45):11249–53.CrossRefGoogle Scholar
  105. 105.
    Biswal SL, Gast AP. Mechanics of semiflexible chains formed by poly(ethylene glycol)-linked paramagnetic particles. Phys Rev E Stat Nonlin Soft Matter Phys. 2003;68(2 Pt 1):021402.PubMedCrossRefGoogle Scholar
  106. 106.
    Byrom J, Han P, Savory M, Biswal SL. Directing assembly of DNA-coated colloids with magnetic fields to generate rigid, semiflexible, and flexible chains. Langmuir. 2014;30(30):9045–52.PubMedCrossRefGoogle Scholar
  107. 107.
    Bannwarth MB, Kazer SW, Ulrich S, Glasser G, Crespy D, Landfester K. Well-defined nanofibers with tunable morphology from spherical colloidal building blocks. Angew Chem Int Ed. 2013;52(38):10107–11.CrossRefGoogle Scholar
  108. 108.
    Bannwarth MB, Utech S, Ebert S, Weitz DA, Crespy D, Landfester K. Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles. ACS Nano. 2015;9(3):2720–8. PMID: 25695858.PubMedCrossRefGoogle Scholar
  109. 109.
    Merrifield RB. Solid phase peptide synthesis. I. the synthesis of a tetrapeptide. J Am Chem Soc. 1963;85(14):2149–54.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Nanobiotechnology, Institute for Biologically inspired materialsBOKU - University of Natural Resources and Life Sciences ViennaViennaAustria

Personalised recommendations