Advertisement

Pathophysiology of Tendinopathy: Implications for Tennis Elbow

  • Per Renstrom
  • Paul W. AckermannEmail author
Chapter

Abstract

Targeted therapies of elbow tendinopathies have been limited due to lack of knowledge of the underlying pathophysiology. Recreational tennis players are mostly affected by the classical “tennis elbow”––humeral epicondylar lateral tendinopathy, while elite tennis players more commonly present with medial humeral epicondylar tendinopathy, reflecting differences in loading. Repetitive loading in combination with newly discovered intrinsic risk factors, such as genetic abnormalities of eg. matrix proteins and metabolic disorders lead to neuronal dysregulation and the development of tendinopathy. Aberrant sensory nerve sprouting in the tendon may cause pain and by constant release of mediators produce fibrosis. Targeted therapies should in a holistic way address loading abnormalities and intrinsic risk factors with eccentric exercise as a cornerstone of treatment.

References

  1. 1.
    Ackermann PW, Hart D. Metabolic influences on risk for tendon disorders. Cham: Springer; 2016. 298 p.CrossRefGoogle Scholar
  2. 2.
    Khan KM, Maffulli N. Tendinopathy: an Achilles’ heel for athletes and clinicians. Clin J Sport Med. 1998;8(3):151–4.CrossRefGoogle Scholar
  3. 3.
    Ackermann PW, Hart DA. General overview and summary of concepts regarding tendon disease topics addressed related to metabolic disorders. Adv Exp Med Biol. 2016;920:293–8.CrossRefGoogle Scholar
  4. 4.
    Sanders TL, Maradit Kremers H, Bryan AJ, Ransom JE, Smith J, Morrey BF. The epidemiology and health care burden of tennis elbow: a population-based study. Am J Sports Med. 2015;43(5):1066–71.CrossRefGoogle Scholar
  5. 5.
    Woo SL-Y, Renström PAFH. Tendinopathy: a major medical problem in sport. In: Woo SL-Y, Renström PAFH, Arnoczky SP, editors. Tendinopathy in athletes. Oxford: Blackwell Publishing Ltd; 2008.Google Scholar
  6. 6.
    Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol. 2010;6(5):262–8.CrossRefGoogle Scholar
  7. 7.
    Battery L, Maffulli N. Inflammation in overuse tendon injuries. Sports Med Arthrosc. 2011;19(3):213–7.CrossRefGoogle Scholar
  8. 8.
    Nirschl RP, Sobel J. Conservative treatment of tennis elbow. Phys Sportsmed. 1981;9(6):43–54.CrossRefGoogle Scholar
  9. 9.
    Alfredson H, Forsgren S, Thorsen K, Fahlström M, Johansson H, Lorentzon R. Glutamate NMDAR1 receptors localised to nerves in human Achilles tendons. Implications for treatment? Knee Surg Sports Traumatol Arthrosc. 2001;9(2):123–6.CrossRefGoogle Scholar
  10. 10.
    Ackermann PW, Franklin SL, Dean BJ, Carr AJ, Salo PT, Hart DA. Neuronal pathways in tendon healing and tendinopathy--update. Front Biosci. 2014;19:1251–78.CrossRefGoogle Scholar
  11. 11.
    Heinemeier KM, Olesen JL, Haddad F, et al. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J Physiol. 2007;582(Pt 3):1303–16.CrossRefGoogle Scholar
  12. 12.
    Miller BF, Olesen JL, Hansen M, et al. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol. 2005;567(Pt 3):1021–33.CrossRefGoogle Scholar
  13. 13.
    Ohberg L, Alfredson H. Ultrasound guided sclerosis of neovessels in painful chronic Achilles tendinosis: pilot study of a new treatment. Br J Sports Med. 2002;36(3):173–5. discussion 176–177.CrossRefGoogle Scholar
  14. 14.
    Wang JH, Jia F, Yang G, et al. Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect Tissue Res. 2003;44(3-4):128–33.CrossRefGoogle Scholar
  15. 15.
    Khan MH, Li Z, Wang JH. Repeated exposure of tendon to prostaglandin-E2 leads to localized tendon degeneration. Clin J Sport Med. 2005;15(1):27–33.CrossRefGoogle Scholar
  16. 16.
    Sullo A, Maffulli N, Capasso G, Testa V. The effects of prolonged peritendinous administration of PGE1 to the rat Achilles tendon: a possible animal model of chronic Achilles tendinopathy. J Orthop Sci. 2001;6(4):349–57.CrossRefGoogle Scholar
  17. 17.
    Millar NL, Hueber AJ, Reilly JH, et al. Inflammation is present in early human tendinopathy. Am J Sports Med. 2010;38(10):2085–91.CrossRefGoogle Scholar
  18. 18.
    Schubert TE, Weidler C, Lerch K, Hofstädter F, Straub RH. Achilles tendinosis is associated with sprouting of substance P positive nerve fibres. Ann Rheum Dis. 2005;64(7):1083–6.CrossRefGoogle Scholar
  19. 19.
    Millar NL, Wei AQ, Molloy TJ, Bonar F, Murrell GA. Cytokines and apoptosis in supraspinatus tendinopathy. J Bone Joint Surg Br. 2009;91(3):417–24.CrossRefGoogle Scholar
  20. 20.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63.CrossRefGoogle Scholar
  21. 21.
    Freeman TA, Parvizi J, Dela Valle CJ, Steinbeck MJ. Mast cells and hypoxia drive tissue metaplasia and heterotopic ossification in idiopathic arthrofibrosis after total knee arthroplasty. Fibrogenesis Tissue Repair. 2010;3:17.CrossRefGoogle Scholar
  22. 22.
    Pufe T, Petersen WJ, Mentlein R, Tillmann BN. The role of vasculature and angiogenesis for the pathogenesis of degenerative tendons disease. Scand J Med Sci Sports. 2005;15(4):211–22.CrossRefGoogle Scholar
  23. 23.
    Ackermann PW, Li J, Lundeberg T, Kreicbergs A. Neuronal plasticity in relation to nociception and healing of rat achilles tendon. J Orthop Res. 2003;21(3):432–41.CrossRefGoogle Scholar
  24. 24.
    Lian Ø, Dahl J, Ackermann PW, Frihagen F, Engebretsen L, Bahr R. Pronociceptive and antinociceptive neuromediators in patellar tendinopathy. Am J Sports Med. 2006;34(11):1801–8.CrossRefGoogle Scholar
  25. 25.
    van Sterkenburg MN, van Dijk CN. Mid-portion Achilles tendinopathy: why painful? An evidence-based philosophy. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):1367–75.CrossRefGoogle Scholar
  26. 26.
    Messner K, Wei Y, Andersson B, Gillquist J, Räsänen T. Rat model of Achilles tendon disorder. A pilot study. Cells Tissues Organs. 1999;165(1):30–9.CrossRefGoogle Scholar
  27. 27.
    Scott A, Bahr R. Neuropeptides in tendinopathy. Front Biosci. 2009;14:2203–11.CrossRefGoogle Scholar
  28. 28.
    Andersson G, Danielson P, Alfredson H, Forsgren S. Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon. Regul Pept. 2008;150(1-3):81–7.CrossRefGoogle Scholar
  29. 29.
    Bring DK, Reno C, Renstrom P, Salo P, Hart DA, Ackermann PW. Joint immobilization reduces the expression of sensory neuropeptide receptors and impairs healing after tendon rupture in a rat model. J Orthop Res. 2009;27(2):274–80.CrossRefGoogle Scholar
  30. 30.
    Hoffmann P, Hoeck K, Deters S, Werner-Martini I, Schmidt WE. Substance P and calcitonin gene related peptide induce TGF-alpha expression in epithelial cells via mast cells and fibroblasts. Regul Pept. 2010;161(1-3):33–7.CrossRefGoogle Scholar
  31. 31.
    Ljung BO, Alfredson H, Forsgren S. Neurokinin 1-receptors and sensory neuropeptides in tendon insertions at the medial and lateral epicondyles of the humerus. Studies on tennis elbow and medial epicondylalgia. J Orthop Res. 2004;22(2):321–7.CrossRefGoogle Scholar
  32. 32.
    Schizas N, Li J, Andersson T, et al. Compression therapy promotes proliferative repair during rat Achilles tendon immobilization. J Orthop Res. 2010;28(7):852–8.PubMedGoogle Scholar
  33. 33.
    Fong G, Backman LJ, Hart DA, Danielson P, McCormack B, Scott A. Substance P enhances collagen remodeling and MMP-3 expression by human tenocytes. J Orthop Res. 2013;31(1):91–8.CrossRefGoogle Scholar
  34. 34.
    Molloy TJ, Kemp MW, Wang Y, Murrell GA. Microarray analysis of the tendinopathic rat supraspinatus tendon: glutamate signaling and its potential role in tendon degeneration. J Appl Physiol (1985). 2006;101(6):1702–9.CrossRefGoogle Scholar
  35. 35.
    Schizas N, Lian Ø, Frihagen F, Engebretsen L, Bahr R, Ackermann PW. Coexistence of up-regulated NMDA receptor 1 and glutamate on nerves, vessels and transformed tenocytes in tendinopathy. Scand J Med Sci Sports. 2010;20(2):208–15.CrossRefGoogle Scholar
  36. 36.
    Dean BJ, Snelling SJ, Dakin SG, Javaid MK, Carr AJ. In vitro effects of glutamate and N-methyl-D-aspartate receptor (NMDAR) antagonism on human tendon derived cells. J Orthop Res. 2015;33(10):1515–22.CrossRefGoogle Scholar
  37. 37.
    Spang C, Backman LJ, Le Roux S, Chen J, Danielson P. Glutamate signaling through the NMDA receptor reduces the expression of scleraxis in plantaris tendon derived cells. BMC Musculoskelet Disord. 2017;18(1):218.CrossRefGoogle Scholar
  38. 38.
    Ackermann PW, Salo P, Hart DA. Tendon Innervation. Adv Exp Med Biol. 2016;920:35–51.CrossRefGoogle Scholar
  39. 39.
    Fleisig GS, Andrews JR, Dillman CJ, Escamilla RF. Kinetics of baseball pitching with implications about injury mechanisms. Am J Sports Med. 1995;23(2):233–9.CrossRefGoogle Scholar
  40. 40.
    Ryu RK, McCormick J, Jobe FW, Moynes DR, Antonelli DJ. An electromyographic analysis of shoulder function in tennis players. Am J Sports Med. 1988;16(5):481–5.CrossRefGoogle Scholar
  41. 41.
    Ellenbecker T, AJ M. The elbow in sport. Champaign, IL: Human Kinetics; 1997.Google Scholar
  42. 42.
    Runge F. Zur genese und behandlung des schreibekrampfes. Berlin Klin Wochensch. 1873;21:245.Google Scholar
  43. 43.
    Cyriax J, Cyriax P. Illustrated manual of orthopaedic medicine. London: Butterworth; 1983.Google Scholar
  44. 44.
    Leadbetter WB. Cell-matrix response in tendon injury. Clin Sports Med. 1992;11(3):533–78.PubMedGoogle Scholar
  45. 45.
    Peterson L, Renström P. Sport injuries. London: CRC Press, Taylor & Francis Ltd; 2017.Google Scholar
  46. 46.
    Ollivierre CO, Nirschl RP. Tennis elbow. Current concepts of treatment and rehabilitation. Sports Med. 1996;22(2):133–9.CrossRefGoogle Scholar
  47. 47.
    Pluim BM, Staal JB, Windler GE, Jayanthi N. Tennis injuries: occurrence, aetiology, and prevention. Br J Sports Med. 2006;40(5):415–23.CrossRefGoogle Scholar
  48. 48.
    Pluim BM, Clarsen B, Verhagen E. Injury rates in recreational tennis players do not differ between different playing surfaces. Br J Sports Med. 2018;52(9):611–5.CrossRefGoogle Scholar
  49. 49.
    Carroll R. Tennis elbow: incidence in local league players. Br J Sports Med. 1981;15(4):250–6.CrossRefGoogle Scholar
  50. 50.
    Titchener AG, Fakis A, Tambe AA, Smith C, Hubbard RB, Clark DI. Risk factors in lateral epicondylitis (tennis elbow): a case-control study. J Hand Surg Eur Vol. 2013;38(2):159–64.CrossRefGoogle Scholar
  51. 51.
    Nirschl RP, Rodin DM, Ochiai DH, Maartmann-Moe C. Group D-A--S. Iontophoretic administration of dexamethasone sodium phosphate for acute epicondylitis. A randomized, double-blinded, placebo-controlled study. Am J Sports Med. 2003;31(2):189–95.CrossRefGoogle Scholar
  52. 52.
    Nirschl RP, Ashman ES. Tennis elbow tendinosis (epicondylitis). Instr Course Lect. 2004;53:587–98.PubMedGoogle Scholar
  53. 53.
    Ellenbecker TS, Roetert EP, Bailie DS, Davies GJ, Brown SW. Glenohumeral joint total rotation range of motion in elite tennis players and baseball pitchers. Med Sci Sports Exerc. 2002;34(12):2052–6.CrossRefGoogle Scholar
  54. 54.
    King JW, Brelsford HJ, Tullos HS. Analysis of the pitching arm of the professional baseball pitcher. Clin Orthop Relat Res. 1969;67:116–23.CrossRefGoogle Scholar
  55. 55.
    Ellenbecker TS, Mattalino AJ, Elam EA, Caplinger RA. Medial elbow joint laxity in professional baseball pitchers. A bilateral comparison using stress radiography. Am J Sports Med. 1998;26(3):420–4.CrossRefGoogle Scholar
  56. 56.
    Wright RW, Steger-May K, Wasserlauf BL, O’Neal ME, Weinberg BW, Paletta GA. Elbow range of motion in professional baseball pitchers. Am J Sports Med. 2006;34(2):190–3.CrossRefGoogle Scholar
  57. 57.
    Ackermann PW. Healing and repair mechanism. In: Karlsson J, Calder J, van Diek N, editors. Achilles tendon disorders. Current concepts. 2nd ed. Guildford: DJO Publications; 2014. p. 17–26.Google Scholar
  58. 58.
    Ellenbecker TS, Nirschl R, Renstrom P. Current concepts in examination and treatment of elbow tendon injury. Sports Health. 2013;5(2):186–94.CrossRefGoogle Scholar
  59. 59.
    Cullinane FL, Boocock MG, Trevelyan FC. Is eccentric exercise an effective treatment for lateral epicondylitis? A systematic review. Clin Rehabil. 2014;28(1):3–19.CrossRefGoogle Scholar
  60. 60.
    Peterson M, Butler S, Eriksson M, Svardsudd K. A randomized controlled trial of eccentric vs. concentric graded exercise in chronic tennis elbow (lateral elbow tendinopathy). Clin Rehabil. 2014;28(9):862–72.CrossRefGoogle Scholar
  61. 61.
    Croisier JL, Foidart-Dessalle M, Tinant F, Crielaard JM, Forthomme B. An isokinetic eccentric programme for the management of chronic lateral epicondylar tendinopathy. Br J Sports Med. 2007;41(4):269–75.CrossRefGoogle Scholar
  62. 62.
    Haake M, König IR, Decker T, et al. Extracorporeal shock wave therapy in the treatment of lateral epicondylitis : a randomized multicenter trial. J Bone Joint Surg Am. 2002;84A(11):1982–91.CrossRefGoogle Scholar
  63. 63.
    Basford JR, Sheffield CG, Cieslak KR. Laser therapy: a randomized, controlled trial of the effects of low intensity Nd:YAG laser irradiation on lateral epicondylitis. Arch Phys Med Rehabil. 2000;81(11):1504–10.CrossRefGoogle Scholar
  64. 64.
    Boyer MI, Hastings H. Lateral tennis elbow: “Is there any science out there?”. J Shoulder Elbow Surg. 1999;8(5):481–91.CrossRefGoogle Scholar
  65. 65.
    Labelle H, Guibert R, Joncas J, Newman N, Fallaha M, Rivard CH. Lack of scientific evidence for the treatment of lateral epicondylitis of the elbow. An attempted meta-analysis. J Bone Joint Surg Br. 1992;74(5):646–51.CrossRefGoogle Scholar
  66. 66.
    Trudel D, Duley J, Zastrow I, Kerr EW, Davidson R, MacDermid JC. Rehabilitation for patients with lateral epicondylitis: a systematic review. J Hand Ther. 2004;17(2):243–66.CrossRefGoogle Scholar
  67. 67.
    Dingemanse R, Randsdorp M, Koes BW, Huisstede BM. Evidence for the effectiveness of electrophysical modalities for treatment of medial and lateral epicondylitis: a systematic review. Br J Sports Med. 2014;48(12):957–65.CrossRefGoogle Scholar
  68. 68.
    Coombes BK, Connelly L, Bisset L, Vicenzino B. Economic evaluation favours physiotherapy but not corticosteroid injection as a first-line intervention for chronic lateral epicondylalgia: evidence from a randomised clinical trial. Br J Sports Med. 2016;50(22):1400–5.CrossRefGoogle Scholar
  69. 69.
    Claessen FM, Heesters BA, Chan JJ, Kachooei AR, Ring D. A meta-analysis of the effect of corticosteroid injection for enthesopathy of the extensor carpi radialis brevis origin. J Hand Surg Am. 2016;41(10):988–998.e982.CrossRefGoogle Scholar
  70. 70.
    Dean BJ, Carr AJ. The effects of glucocorticoid on tendon and tendon derived cells. Adv Exp Med Biol. 2016;920:239–46.CrossRefGoogle Scholar
  71. 71.
    Waljee AK, Rogers MA, Lin P, et al. Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ. 2017;357:j1415.CrossRefGoogle Scholar
  72. 72.
    de Vos RJ. Does platelet-rich plasma increase tendon metabolism? Adv Exp Med Biol. 2016;920:263–73.CrossRefGoogle Scholar
  73. 73.
    de Vos RJ, Windt J, Weir A. Strong evidence against platelet-rich plasma injections for chronic lateral epicondylar tendinopathy: a systematic review. Br J Sports Med. 2014;48(12):952–6.CrossRefGoogle Scholar
  74. 74.
    de Vos RJ, Weir A, van Schie HT, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA. 2010;303(2):144–9.CrossRefGoogle Scholar
  75. 75.
    Pierce TP, Issa K, Gilbert BT, et al. A systematic review of tennis elbow surgery: open versus arthroscopic versus percutaneous release of the common extensor origin. Arthroscopy. 2017;33(6):1260–1268.e1262.CrossRefGoogle Scholar
  76. 76.
    Pascarella A, Alam M, Pascarella F, Latte C, Di Salvatore MG, Maffulli N. Arthroscopic management of chronic patellar tendinopathy. Am J Sports Med. 2011;39(9):1975–83.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
  2. 2.Stockholm Sports Trauma Research CenterKarolinska InstitutetStockholmSweden
  3. 3.Department of Orthopedic SurgeryKarolinska University HospitalStockholmSweden

Personalised recommendations