Advertisement

Assessment of Physical Performance for Individualized Training Prescription in Tennis

  • Alexander FerrautiEmail author
  • Alexander Ulbricht
  • Jaime Fernandez-Fernandez
Chapter

Abstract

Tennis requires a complex interaction of technical, tactical, psychological, and several physical components (i.e., strength, agility) and metabolic pathways (i.e., aerobic and anaerobic) [1] (Fig. 12.1). In order to achieve an optimum cost-benefit ratio of training input, goals and contents during physical conditioning must be defined according to the specific workload and the most important limiting performance factors in tennis but also closely corresponding to the individual needs (strengths and weaknesses) of each athlete. The dominance of the technical and tactical requirements for tennis performance can be figured out by an upper position in a hierarchical model of performance-limiting aspects (Fig. 12.1). The weekly training volume has to be adjusted correspondingly, and the respective volume for physical conditioning remains comparably low. Therefore, on an elite performance level, it becomes of predominant importance that physical training has to be combined with technical and tactical training on-court and during off-court sessions that should meet precisely the individual requirements which have to be regularly assessed by physical performance tests [2–5].

References

  1. 1.
    Fernandez-Fernandez J, Sanz-Rivas D, Mendez-Villanueva A. A review of the activity profile and physiological demands of tennis match play. Strength Cond. 2009;31(4):15.CrossRefGoogle Scholar
  2. 2.
    Ferrauti A, Maier P, Weber K. Handbuch für Tennistraining, Leistung – Athletik - Gesundheit. Aachen: Meyer & Meyer; 2014.Google Scholar
  3. 3.
    Fernandez-Fernandez J, Ulbricht A, Ferrauti A. Fitness testing of tennis players: how valuable is it? Br J Sports Med. 2014;48:i22–31.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Reilly T, Morris T, Whyte G. The specificity of training prescription and physiological assessment: a review. J Sports Sci. 2009;27(6):575–89.PubMedCrossRefGoogle Scholar
  5. 5.
    MacDougall JD, Wenger HA, Green HJ. Physiological testing of the high-performance athlete. Champaign: Human Kinetics; 1991.Google Scholar
  6. 6.
    Ferrauti A, Kinner V, Fernandez-Fernandez J. The Hit & Turn Tennis Test: an acoustically controlled endurance test for tennis players. J Sports Sci. 2011;29(5):485–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Ulbricht A, Fernandez-Fernandez J, Ferrauti A. Conception for Fitness Testing and individualized training programs in the German Tennis Federation. Sports Orthopaed Traumatol. 2013;29:180–92.CrossRefGoogle Scholar
  8. 8.
    Bangsbo J. The physiology of soccer with special reference to intense intermittent exercise. Acta Physiol Scand Suppl. 1994;619:1.PubMedGoogle Scholar
  9. 9.
    Hoff J. Training and testing physical capacities for elite soccer players. J Sports Sci. 2005;23(6):573–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Girard O, Chevalier R, Leveque F, Micallef JP, Millet GP. Specific incremental field test for aerobic fitness in tennis. Br J Sports Med. 2006;40(9):791–6.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Svensson M, Drust B. Testing soccer players. J Sports Sci. 2005;23(6):601–18.PubMedCrossRefGoogle Scholar
  12. 12.
    Alricsson M, Harms-Ringdahl K, Werner S. Reliability of sports related functional tests with emphasis on speed and agility in young athletes. Scand J Med Sci Sports. 2001;11(4):229–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Bangsbo J, Mohr M, Poulsen A, Krustrup P. Training and testing the elite athlete. J Exerc Sci Fit. 2006;4(1):1–13.Google Scholar
  14. 14.
    Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35(6):501–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Kovacs MS. Tennis physiology: training the competitive athlete. Sports Med. 2007;37(3):189–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Signorile J, Sandler D, Smith W, Perry AC. Correlation analyses and regression modeling between isokinetic testing and on-court performance in competitive adolescent tennis players. J Strength Cond Res. 2005;19(3):519–26.PubMedGoogle Scholar
  17. 17.
    Gabbett TJ. Science of rugby league football: a review. J Sports Sci. 2005;23(9):961–76.PubMedCrossRefGoogle Scholar
  18. 18.
    Ulbricht A, Fernandez-Fernandez J, Villanueva A, Ferrauti A. Impact of physical fitness characteristics on tennis performance in elite junior tennis players. J Strength Cond Res. 2016;30(4):989–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Girard O, Millet GP. Physical determinants of tennis performance in competitive teenage players. J Strength Cond Res. 2009;23(6):1867–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Kraemer WJ, Hakkinen K, Triplett-Mcbride NT, Fry AC, Koziris LP, Ratamess NA, Bauer JE, Vlek JS, McConnel T, Newton RU, Gordon SE, Cummings D, Hauth J, Pullo F, Lynch JM, Fleck SJ, Mazzetti SA, Knuttgen HG. Physiological changes with periodized resistance training in women tennis players. Med Sci Sports Exerc. 2003;35(1):157–68.PubMedCrossRefGoogle Scholar
  21. 21.
    Ulbricht A, Fernandez-Fernandez J, Villanueva A, Ferrauti A. The relative age effect and physical fitness characteristics in German male tennis players. J Sports Sci Med. 2015;14:634–42.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Roetert P, Ellenbecker TS. Complete conditioning for tennis. Champaign: Human Kinetics; 2007.Google Scholar
  23. 23.
    Buckeridge A, Farrow D, Gastin P, McGrath M, Morrow P, Quinn A, Young W. Protocols for the physiological assessment of high-performance tennis players. Physiological Tests for Elite Athletes Australian Sports Commission. Champaign: Human Kinetics; 2000.Google Scholar
  24. 24.
    Reid M, Quinn A, Crespo M. Strength and conditioning for tennis. London: International Tennis Federation; 2003.Google Scholar
  25. 25.
    Bourdon P. Blood lactate thresholds: concepts and applications. In: Gore CJ, Tanner RK, editors. Physiological tests for elite athletes. 2nd ed. Champaign: Human Kinetics; 2013. p. 77–102.Google Scholar
  26. 26.
    Ferrauti A, Weber K, Wright PR. Endurance: basic, semi-specific and tennis specific. In: Reid M, Quinn A, Crespo M, editors. Strength and conditioning for tennis. London: ITF; 2003. p. 93–112.Google Scholar
  27. 27.
    Maksud MG, Coutts KD. Application of the Cooper twelve-minute run-walk test to young males. Res Q Am Assoc Health. 1971;42(1):54–9.Google Scholar
  28. 28.
    Leger L, Boucher R. An indirect continuous running multistage field test: the Universite de Montreal track test. Can J Appl Sport Sci. 1980;5(2):77–84.PubMedGoogle Scholar
  29. 29.
    Chtara M, Chamari K, Chaouachi M, Chaouachi A, Koubaa D, Feki Y, Millet GP, Amri M. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Br J Sports Med. 2005;39(8):555–60.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Léger LA, Lambert J. A maximal multistage 20 m shuttle run test to predict VO2 max. Eur J Appl Physiol Occup Physiol. 1982;49(1):1–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Leger L, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101.PubMedCrossRefGoogle Scholar
  32. 32.
    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):37–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Buchheit M. The 30-15 intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res. 2008;22(2):365–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Reid M, Sibte N, Clark S, Whiteside D. Tennis players. In: Gore CJ, Tanner RK, editors. Physiological tests for elite athletes. 2nd ed. Champaign: Human Kinetics; 2013. p. 449–61.Google Scholar
  35. 35.
    Spencer M, Bishop D, Dawson B, Goodman C. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35(12):1025–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Smekal G, Pokan R, von Duvillard SP, Baron R, Tschan H, Bachl N. Comparison of laboratory and “on-court” endurance testing in tennis. Int J Sports Med. 2000;21(4):242–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Baiget E, Fernández-Fernández J, Iglesias X, Vallejo L, Rodriguez FA. On-court endurance and performance testing in competitive male tennis players. J Strength Cond Res. 2014;28(1):256–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Weber K, Hollmann W. Neue Methoden zur Diagnostik und Trainingssteuerung der tennisspezifischen Ausdauerleistungsfähigkeit. In: Gabler H, editor. Talentsuche und Talentförderung im Tennis. Ahrensberg: Czwalina; 1984. p. 186–209.Google Scholar
  39. 39.
    Weber K. Der Tennisport aus internistisch-sportmedizinisher Sicht. Schriften der Deutschen Sporthoschule Köln. St. Augustin: Academia; 1987.Google Scholar
  40. 40.
    Vergauwen L, Spaepen AJ, Lefevre J, Hespel P. Evaluation of stroke performance in tennis. Med Sci Sports Exerc. 1998;30(8):1281–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Davey PR, Thorpe RD, Williams C. Fatigue decreases skilled tennis performance. J Sports Sci. 2002;20(4):311–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Brechbuhl C, Girard O, Millet GP, Schmitt L. Technical alterations during an incremental field test in elite male tennis players. Med Sci Sports Exerc. 2017;49(9):1917–26.PubMedCrossRefGoogle Scholar
  43. 43.
    Urso R, Okuno N, Gomes R, Bertuzzi R. Validity and reliability evidences of the Hit & Turn Tennis Test. Sci Sports. 2013;29(4):e47–53.CrossRefGoogle Scholar
  44. 44.
    Fernandez-Fernandez J, Kinner V, Ferrauti A. The physiological demands of hitting and running in tennis on different surfaces. J Strength Cond Res. 2010;24(12):3255–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Inbar O, Bar-Or O, Skinner JS. The Wingate anaerobic test. Champaign: Human Kinetics; 1996.Google Scholar
  46. 46.
    Kovacs MS, Pritchett R, Wickwire PJ, Green JM. Physical performance changes after unsupervised training during the autumn/spring semester break in competitive tennis players. Br J Sports Med. 2007;41(11):705–10.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lakomy HKA. The use of a non-motorised treadmill for analysing sprint performance. Ergonomics. 1987;30:627–37.CrossRefGoogle Scholar
  48. 48.
    Ratel S, Williams C, Oliver J, Armstrong N. Effects of age and recovery duration on performance during multiple treadmill sprints. Int J Sports Med. 2006;27(01):1–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Spriet LL, Howlett RA, Heigenhauser GJ. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med Sci Sport Exerc. 2000;32(4):756–63.CrossRefGoogle Scholar
  50. 50.
    Bleicher A, Mader A, Mester J. Zur Interpretation von Laktatleistungskurven – experimentelle Ergebnisse mit computergestützten Nachberechnungen. Spektrum der Sportwissenschaften. 1998;10:92–104.Google Scholar
  51. 51.
    Dawson B. Repeated-sprint ability: where are we? Int J Sports Physiol Perform. 2012;7(3):285–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability - Part I: Factors contributing to fatigue. Sports Med. 2011;41(8):673–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability - Part II: Recommendations for training. Sports Med. 2011;41(9):741–56.PubMedCrossRefGoogle Scholar
  54. 54.
    Fernandez-Fernandez J, Zimek R, Wiewelhove T, Ferrauti A. High-intensity interval training vs. repeated-sprint training in tennis. J Strength Cond Res. 2012;26(1):53–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Buchheit M. Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. Int J Sports Med. 2012;33(3):230–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Kovacs MS, Ellenbecker TS. A performance evaluation of the tennis serve: implications for strength, speed, power, and flexibility training. Strength Cond J. 2011;33(4):22.CrossRefGoogle Scholar
  57. 57.
    Reid M, Schneiker K. Strength and conditioning in tennis: current research and practice. J Sci Med Sport. 2008;11(3):248–56.PubMedCrossRefGoogle Scholar
  58. 58.
    Cronin JB, Henderson ME. Maximal strength and power assessment in novice weight trainers. J Strength Cond Res. 2004;18(1):48–52.PubMedGoogle Scholar
  59. 59.
    Cronin JB, Hansen KT. Strength and power predictors of sports speed. J Strength Cond Res. 2005;19(2):349–57.PubMedGoogle Scholar
  60. 60.
    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power. Sports Med. 2011;41(1):17–38.PubMedCrossRefGoogle Scholar
  61. 61.
    Wisløff U, Castagna C, Helgerud J, Jones R. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):285–8.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Baker D, Nance S. The relation between running speed and measures of strength and power in professional rugby league players. J Strength Cond Res. 1999;13(3):230–5.Google Scholar
  63. 63.
    Brown L, Weir J. Accurate assessment of muscular strength and power, ASEP procedures recommendation. J Exerc Physiol. 2001;4(3):1–21.Google Scholar
  64. 64.
    Reynolds JM, Gordon TJ, Robergs RA. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J Strength Cond Res. 2006;20(3):584–92.PubMedGoogle Scholar
  65. 65.
    Cronin J, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35(3):213–34.PubMedCrossRefGoogle Scholar
  66. 66.
    Girard O, Micallef JP, Millet GP. Lower-limb activity during the power serve in tennis: effects of performance level. Med Sci Sports Exerc. 2005;37(6):1021–9.PubMedGoogle Scholar
  67. 67.
    Elliott B. Biomechanics and tennis. Br J Sports Med. 2006;40(5):392–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Roetert E, Piorkowski P, Woods R, Brown SW. Establishing percentiles for junior tennis players based on physical fitness testing results. Clin Sport Med. 1995;14(1):1.Google Scholar
  69. 69.
    Ellenbecker TS, Roetert EP. An isokinetic profile of trunk rotation strength in elite tennis players. Med Sci Sports Exerc. 2004;36(11):1959–63.PubMedCrossRefGoogle Scholar
  70. 70.
    Ikeda Y, Kijima K, Kawabata K, Fuchimoto T, Ito A. Relationship between side medicine-ball throw performance and physical ability for male and female athletes. Eur J Appl Physiol. 2007;99(1):47–55.PubMedCrossRefGoogle Scholar
  71. 71.
    Ulbricht A, Ferrauti A, Pfannkoch P, Gewehr J, Fernandez-Fernandez J. Impact of physical performance on tennis ranking in juniors-results from nationwide German tennis test (abstract). In: Cable T, George K, editors. 16th Annual Congress of the European College of Sports Science, Liverpool; 2011.Google Scholar
  72. 72.
    Hornery DJ, Farrow D, Mujika I, Young WB. Caffeine, carbohydrate, and cooling use during prolonged simulated tennis. Int J Sports Physiol Perform. 2007;2(4):423.PubMedCrossRefGoogle Scholar
  73. 73.
    Fernandez-Fernandez J, Ellenbecker T, Sanz-Rivas D, Ulbricht A, Ferrauti A. Effects of a 6-week Junior Tennis Conditioning Program on Service Velocity. J Sports Sci Med. 2013;12(2):232–9.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Ferrauti A, Bastiaens K. Short-term effects of light and heavy load interventions on service velocity and precision in elite young tennis players. Br J Sports Med. 2007;41(11):750–3.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sheppard J, Young W. Agility literature review: classifications, training and testing. J Sports Sci. 2006;24(9):919–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Little T, Williams AG. Specificity of acceleration, maximum speed, and agility in professional soccer players. J Strength Cond Res. 2005;19(1):76–8.PubMedGoogle Scholar
  77. 77.
    Stewart PF, Turner AN, Miller SC. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand J Med Sci Sports. 2014;24(3):500–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Cooke K, Quinn A, Sibte N. Testing speed and agility in elite tennis players. Strength Cond J. 2011;33(4):69–72.CrossRefGoogle Scholar
  79. 79.
    Ellenbecker T, De Carlo M, DeRosa C. Effective functional progressions in sport rehabilitation. Champaign: Human Kinetics; 2009.Google Scholar
  80. 80.
    Pluim BM, Staal JB, Windler GE, Jayanthi N. Tennis injuries: occurrence, aetiology, and prevention. Br J Sports Med. 2006;40(5):415–23.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Cools AM, De Wilde L, Van Tongel A, Ceyssens C, Ryckewaert R, Cambier DC. Measuring shoulder external and internal rotation strength and range of motion: comprehensive intra-rater and inter-rater reliability study of several testing protocols. J Shoulder Elb Surg. 2014;23:1454–61.CrossRefGoogle Scholar
  82. 82.
    Almeida GPL, de Souza VL, Sano SS, Saccol MF, Cohen M. Comparison of hip rotation range of motion in judo athletes with and without history of low back pain. Man Ther. 2012;17:231–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Cejudo A, Sainz de Baranda P, Ayala F, Santonja F. Test-retest reliability of seven common clinical tests for assessing lower extremity muscle flexibility in futsal and handball players. Phys Ther Sport. 2015;16:107–12.PubMedCrossRefGoogle Scholar
  84. 84.
    Ellenbecker TS. Musculoskeletal examination of elite junior tennis players. Sports Med J. 2014;3:548–56.Google Scholar
  85. 85.
    Kibler WB, Uhl TL, Maddux JW, Brooks PV, Zeller B, McMullen J. Qualitative clinical evaluation of scapular dysfunction: a reliability study. J Shoulder Elb Surg. 2002;11(6):550–6.CrossRefGoogle Scholar
  86. 86.
    Ellenbecker TS. Physical examination of the shoulder. Philadelphia: Saunders; 2004.Google Scholar
  87. 87.
    Peeler J, Anderson J. Reliability of the Thomas test for assessing range of motion about the hip. Phys Ther Sport. 2007;8(1):14–21.CrossRefGoogle Scholar
  88. 88.
    Magee DJ. Orthopaedic physical assessment. Amsterdam: Elsevier; 2008.Google Scholar
  89. 89.
    Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function–Part 1. N Am J Sports Phys Ther. 2006;1(2):62.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Minick KI, Kiesel KB, Burton L, Taylor A, Plisky P, Butler RJ. Interrater reliability of the functional movement screen. J Strength Cond Res. 2010;24(2):479–86.PubMedCrossRefGoogle Scholar
  91. 91.
    Gribble PA, Brigle J, Pietrosimone BG, Pfile KR, Webster KA. Intrarater reliability of the functional movement screen. J Strength Cond Res. 2013;27(4):978–81.PubMedCrossRefGoogle Scholar
  92. 92.
    Elias JE. The inter-rater reliability of the functional movement screen within an athletic population using untrained raters. J Strength Cond Res. 2015;30(9):1533–4287.Google Scholar
  93. 93.
    Smith CA, Chimera NJ, Wright NJ, Warren M. Interrater and intrarater reliability of the functional movement screen. J Strength Cond Res. 2013;27(4):982–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Bardenett SM, Micca JJ, DeNoyelles JT, Miller SD, Jenk DT, Brooks GS. Functional movement screen normative values and validity in high school athletes: can the FMS be used as a predictor of injury? Int J Sports Phys Ther. 2015;10(3):303–8.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Birrer R, Levine R, Gallippi L, Tischler H. The correlation of performance variables in preadolescent tennis players. J Sports Med Phys Fitness. 1986;26(2):137–9.PubMedGoogle Scholar
  96. 96.
    Kibler WB, McQueen C, Uhl T. Fitness evaluations and fitness findings in competitive junior tennis players. Clin Sports Med. 1988;7:403–16.PubMedGoogle Scholar
  97. 97.
    Roetert EP, Garrett GE, Brown SW, Camaione D. Performance profiles of nationally ranked junior tennis players. J Strength Cond Res. 1992;6(4):225–31.Google Scholar
  98. 98.
    Malina RM, Bouchard C, Bar-Or O. Growth, maturation and physical activity. Champaign: Human Kinetics; 2004.Google Scholar
  99. 99.
    Ford P, De Ste Croix M, Lloyd R, Meyers R, Moosavi M, Oliver J, Till K, Williams C. The long term athlete development model: physiological evidence and application. J Sports Sci. 2011;29(4):389–402.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Ferrauti
    • 1
    Email author
  • Alexander Ulbricht
    • 1
  • Jaime Fernandez-Fernandez
    • 2
  1. 1.Faculty of Sport Science, Department of Training ScienceRuhr-Universität BochumBochumGermany
  2. 2.Faculty of Physical Activity and Sports SciencesUniversity of LeónLeónSpain

Personalised recommendations