Unfitted FEM for Modelling the Interaction of Multiple Fractures in a Poroelastic Medium

  • Bianca Giovanardi
  • Luca Formaggia
  • Anna Scotti
  • Paolo Zunino
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 121)


We propose a mathematical model and a discretization strategy for the simulation of pressurized fractures in porous media accounting for the poroelastic effects due to the interaction of pressure and flow with rock deformations. The aim of the work is to develop a numerical scheme suitable to model the interplay among several fractures subject to fluid injection in different geometric configurations, in view of the application of this technique to hydraulic fracturing. The eXtended Finite Element Method, here employed for both the mechanical and fluid-dynamic problems, is particularly useful to analyze different configurations without remeshing. In particular, we adopt an ad hoc enrichment for the displacement at the fracture tip and a hybrid dimensional approach for the fluid. After the presentation of the model and discretization details we discuss some test cases to assess the impact of fracture spacing on aperture during injection.


  1. 1.
    Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967)Google Scholar
  2. 2.
    Belytschko, T., Black, T.: Elastic crack growth in finite element with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999). https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S. http://free-journal.umm.ac.id/files/file/minimal{_}remesh.psGoogle Scholar
  3. 3.
    Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. pp. 594–601 (1957). https://doi.org/10.1002/9780470172766.ch13. http://scholar.google.com/scholar?q=intitle:The+Elastic+Coefficients+of+the+Theory+of+Consolidation{#}0
  4. 4.
    Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R.: Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. Springer Proceedings in Mathematics and Statistics, vol. 78, pp. 527–535. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05591-6_52
  5. 5.
    Bukac, Martina, Yotov, Ivan, Zunino, Paolo: Dimensional model reduction for flow through fractures in poroelastic media. ESAIM: M2AN (2016). https://doi.org/10.1051/m2an/2016069.
  6. 6.
    Bunger, A., Zhang, X., Jeffrey, R.: Parameters affecting the interaction among closely spaced hydraulic fractures. SPE J. 17(1), 292–306 (2012)Google Scholar
  7. 7.
    Carrier, B., Granet, S.: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng. Fract. Mech. 79, 312–328 (2012). https://doi.org/10.1016/j.engfracmech.2011.11.012.
  8. 8.
    Chen, Z.: Implementation of the XFEM for hydraulic fracture problems. In: 13th International Conference on Fracture, pp. 1–10 (2013)Google Scholar
  9. 9.
    Chen, Z., Bunger, A.P., Zhang, X., Jeffrey, R.G.: Cohesive zone finite element-based modeling of hydraulic fractures. Acta Mech. Solida Sin. 22(5), 443–452 (2009). http://dx.doi.org/10.1016/S0894-9166(09)60295-0
  10. 10.
    Chukwudozie, C., Bourdin, B., Yoshioka, K.: A variational approach to the modeling and numerical simulation of hydraulic fracturing under in-situ stresses. In: Proceedings of 38th Stanford Geothermal Workshop (2013)Google Scholar
  11. 11.
  12. 12.
    Discacciati, M., Quarteroni, A.: Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complutense 22(2), 315–426 (2009).  http://dx.doi.org/10.5209/rev_REMA.2009.v22.n2.16263
  13. 13.
    Giovanardi, B.: Numerical Modeling of Hydro-Mechanical Coupling in Deformable Porous Media: Compaction and Fractures. Politecnico di Milano (2017)Google Scholar
  14. 14.
    Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25(4), 1–59 (2014). http://dx.doi.org/10.1142/S0218202515500141 MathSciNetMATHGoogle Scholar
  15. 15.
    Girault, V., Kumar, K., Wheeler, M.F.: Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Comput. Geosci. 20(5), 997–1011 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gordeliy, E., Peirce, A.: Coupling schemes for modeling hydraulic fracture propagation using the XFEM. Comput. Methods Appl. Mech. Eng. 253, 305–322 (2013). http://dx.doi.org/10.1016/j.cma.2012.08.017 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gordeliy, E., Peirce, A.: Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput. Methods Appl. Mech. Eng. 283, 474–502 (2015). http://dx.doi.org/10.1016/j.cma.2014.09.004 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gupta, P., Duarte, C.A.: Simulation of non-planar three-dimensional hydraulic fracture propagation. Int. J. Numer. Anal. Methods Geomech. 38(13), 1397–1430 (2014).  http://dx.doi.org/10.1002/nag CrossRefGoogle Scholar
  19. 19.
    Hanowski, K.K., Sander, O.: Simulation of Deformation and Flow in Fractured, Poroelastic Materials, pp. 1–36 (2016). http://arxiv.org/abs/1606.05765
  20. 20.
    Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002). http://dx.doi.org/10.1016/S0045-7825(02)00524-8 MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Khoei, A., Hirmand, M., Vahab, M., Bazargan, M.: An enriched FEM technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: numerical and experimental investigations. Int. J. Numer. Methods Eng. 104, 439–468 (2015).  http://dx.doi.org/10.1002/nme.4944 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kim, J., Tchelepi, H.A., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits. Comput. Methods Appl. Mech. Eng. 200(23–24), 2094–2116 (2011). http://dx.doi.org/10.1016/j.cma.2011.02.011 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Landis, C., Wilson, Z., Borden, M., Hughes, T.: Phase-field modeling of hydraulic fracture. In: Society of Engineering Science 51st Annual Technical Meeting, vol. 96, pp. 264–290 (2014). http://dx.doi.org/10.1016/j.jmps.2016.07.019. http://docs.lib.purdue.edu/ses2014/honors/prager/13
  24. 24.
    Lecampion, B.: An extended finite element method for hydraulic fracture problems. Commun. Numer. Methods Eng. 25, 121–133 (2009).  http://dx.doi.org/10.1002/cnm. http://onlinelibrary.wiley.com/doi/10.1002/cnm.1111/abstract
  25. 25.
    Lee, S., Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput. Methods Appl. Mech. Eng. (2016, in press). http://dx.doi.org/10.1016/j.cma.2016.02.008
  26. 26.
    Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci. 19(6), 1171–1195 (2015). http://dx.doi.org/10.1007/s10596-015-9532-5 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999). http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J. http://venus.usc.edu/PAPERS/MultiScaleMechanics/XFEM.pdf
  28. 28.
    Mohammadnejad, T., Andrade, J.: Numerical modeling of hydraulic fracture propagation, closure and reopening using XFEM with application to in-situ stress estimation. Int. J. Numer. Anal. Methods Geomech. (2016, in press).  http://dx.doi.org/10.1002/nag
  29. 29.
    Renard, Y., Pommier, J.: GetFem++5.1 (2016). http://download.gna.org/getfem
  30. 30.
    Sarris, E., Papanastasiou, P.: The influence of the cohesive process zone in hydraulic fracturing modelling. Int. J. Fract. 167(1), 33–45 (2011). http://dx.doi.org/10.1007/s10704-010-9515-4 CrossRefMATHGoogle Scholar
  31. 31.
    Wheeler, M.F., Wick, T., Wollner, W.: An augmented-Lagrangian method for the phase-field approach for pressurized fractures. Comput. Methods Appl. Mech. Eng. 271, 69–85 (2014). http://dx.doi.org/10.1016/j.cma.2013.12.005. http://linkinghub.elsevier.com/retrieve/pii/S0045782513003459
  32. 32.
    Yao, Y., Liu, L., Keer, L.M.: Pore pressure cohesive zone modeling of hydraulic fracture in quasi-brittle rocks. Mech. Mater. 83, 17–29 (2015). http://dx.doi.org/10.1016/j.mechmat.2014.12.010. http://dx.doi.org/10.1016/j.mechmat.2014.12.010

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bianca Giovanardi
    • 1
  • Luca Formaggia
    • 1
  • Anna Scotti
    • 1
  • Paolo Zunino
    • 1
  1. 1.MOX, Department of MathematicsPolitecnico di MilanoMilanItaly

Personalised recommendations