Pollen Morphology and Ultrastructure

  • Heidemarie Halbritter
  • Silvia Ulrich
  • Friðgeir Grímsson
  • Martina Weber
  • Reinhard Zetter
  • Michael Hesse
  • Ralf Buchner
  • Matthias Svojtka
  • Andrea Frosch-Radivo
Open Access


The study of pollen should encompass all structural and ornamental aspects of the grain. Pollen morphology is studied using LM and SEM and is important to visualize the general features of a pollen grain, including, e.g., symmetry, shape, size, aperture number and location, as well as ornamentation. TEM investigations are used to highlight the stratification and the uniqueness of pollen wall layers as well as cytoplasmic features. The following sections explain the most important structural and sculptural pollen features a palynologist should observe.


  1. Ariizumi T, Toryama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62: 437–460CrossRefGoogle Scholar
  2. Banks H, Stafford P, Crane PR (2007) Aperture variation in the pollen of Nelumbo (Nelumbonaceae). Grana 46: 157–163CrossRefGoogle Scholar
  3. Blackmore S, Barnes SH (1995) Garside’s rule and the microspore tetrads of Grevillea rosmarinifolia A. Cunningham and Dryandra polycephala Bentham (Proteaceae). Rev Palaeobot Palynol 85: 111–121CrossRefGoogle Scholar
  4. Blackmore S, Cannon SM (1983) Palynology and systematics of Morinaceae. Rev Palaeobot Palynol 40: 207–226CrossRefGoogle Scholar
  5. Blackmore S, Takahashi M, Uehara K (2000) A preliminary phylogenetic analysis of sporogenesis in pteridophytes. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. Royal Botanic Gardens, Kew, p. 109–124Google Scholar
  6. Bogus K, Harding IC, King A, Charles AJ, Zonneveld KAF, Versteegh GJM (2012) The composition and diversity of dinosporin in species of the Apectodinium complex (Dinoflagellata). Rev Palaeobot Palynol 183: 21–31CrossRefGoogle Scholar
  7. Braconnot H (1829) Recherches chimiques sur le pollen du Typha latifolia, Lin., famille de typhacées. Ann Chim Phys 42: 91–105Google Scholar
  8. Bryant VM, Hall SA (1993) Archaeological palynology in the United States: A critique. Am Antiquity 58: 277–286CrossRefGoogle Scholar
  9. Bryant VM, Holloway RG, Jones JG, Carlson DL (1994) Pollen preservation in alkaline soils of the American southwest. In: Traverse A (ed) Sedimentation of organic particles. Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paolo, p. 47–58Google Scholar
  10. Colpitts CC, Kim SS, Posehn SE, Jepson C, Kim SY, Wiedemann G, Reski R, Wee AGH, Douglas CJ, Suh D–Y (2011) PpASCL, a moss ortholog of anther–specific chalcone synthase–like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway. New Phytol 192: 855–868CrossRefGoogle Scholar
  11. Copenhaver GP (2005) A compendium of plant species producing pollen tetrads. J North Carolina Acad Sci 12: 17–35Google Scholar
  12. Cushing EJ (1967) Evidence for differential pollen preservation in late Quaternary sediments in Minnesota. Rev Palaeobot Palynol 4: 87–101CrossRefGoogle Scholar
  13. De Leeuw JW, Versteegh GJM, Van Bergen PF (2006) Biomacromolecules of algae and plants and their fossil analogues. Plant Ecology 182: 209–233CrossRefGoogle Scholar
  14. Diego–Taboada A, Beckett ST, Atkin SL, Mackenzie G (2014) Hollow pollen shells to enhance drug delivery. Pharmaceutics 6: 80–96CrossRefPubMedCentralGoogle Scholar
  15. Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Lindberg Møller B, Preuss D (2009) CYP704B1 is a Long–Chain Fatty Acid v–Hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151: 574–589CrossRefPubMedCentralGoogle Scholar
  16. Doyle J (2005) Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44: 227–251CrossRefGoogle Scholar
  17. Doyle JA (2010) Function and evolution of saccate pollen. New Phytol 188: 6–9CrossRefGoogle Scholar
  18. Elsik WC (1971) Microbial degradation of sporopollenin. In: Brooks J, Grant PR, Muir MD, Van Gijzel P, Shaw G (eds) Sporopollenin. Academic Press, London New York, p. 480–511Google Scholar
  19. Fægri K, Iversen J (1989) Textbook of Pollen analysis. 4th edition, John Wiley & Sons, ChichesterGoogle Scholar
  20. Fraser WT, Scott AC, Forbes AES, Glasspool IJ, Plotnick RE, Kenig F, Lomax BH (2012) Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores. New Phytol 196: 397–401CrossRefPubMedCentralGoogle Scholar
  21. Fraser WT, Sephton MA, Watson JS, Self S, Lomax BH, James DI, Wellman CH, Callaghan TV, Beerling DJ (2011) UV–B absorbing pigments in spores: biochemical responses to shade in a high–latitude birch forest and implications for sporopollenin–based proxies of past environmental change. Polar Res 30, 8312,
  22. Fraser WT, Watson JS, Sephton MA, Lomax BH, Harrington G, Gosling WD, Self S (2014) Changes in spore chemistry and appearance with increasing maturity. Rev Palaeobot Palynol 201: 41–46CrossRefGoogle Scholar
  23. Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind–pollinated plants. Ann Bot 103: 1515–1527CrossRefPubMedCentralGoogle Scholar
  24. Furness CA (2007) Why does some pollen lack apertures? A review of inaperturate pollen in eudicots. Bot J Linn Soc 155: 29–48CrossRefGoogle Scholar
  25. Furness CA, Rudall PJ (1999) Microsporogenesis in Monocotyledons. Ann Bot 84: 475–499CrossRefGoogle Scholar
  26. Furness CA, Rudall PJ (2001) Pollen and anther characters in monocot systematics. Grana 40: 17–25CrossRefGoogle Scholar
  27. Furness CA, Rudall PJ (2003) Apertures with lids: distribution and significance of operculate pollen in Monocotyledons. Int J Plant Sci 164: 835–854CrossRefGoogle Scholar
  28. Gabarayeva NI, Grigorjeva VV (2010) Sporoderm ontogeny in Chamaedorea microspadix (Arecaceae): self–assembly as the underlying cause of development. Grana 49: 91–114CrossRefGoogle Scholar
  29. Gabarayeva NI, Grigorjeva VV, Rowley JR (2010) A new look at sporoderm ontogeny in Persea americana and the hidden side of development. Ann Bot 105: 939–955CrossRefPubMedCentralGoogle Scholar
  30. Ganders FR (1979) The biology of heterostyly. NZ J Bot 17(4): 607–635CrossRefGoogle Scholar
  31. Grega L, Anderson S, Cheetham M, Clemente M, Colletti A, Moy W, Talarico D, Thatcher SL, Osborn JM (2013) Aerodynamic characteristics of saccate pollen grains. Int J Plant Sci 174: 499–510CrossRefGoogle Scholar
  32. Grímsson F, Zetter R (2011) Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262–310CrossRefGoogle Scholar
  33. Halbritter H, Hesse M (1995) The convergent evolution of exine shields in Angiosperm pollen. Grana 34: 108–119CrossRefGoogle Scholar
  34. Halbritter H, Hesse M (2004) Principal modes of infoldings in tricolp(or)ate Angiosperm pollen. Grana 43: 1–14CrossRefGoogle Scholar
  35. Halbritter H, Hesse M (2005) Specific ornamentation of orbicular walls and pollen grains, as exemplified by Acanthaceae. Grana 44: 308–313CrossRefGoogle Scholar
  36. Havinga AJ (1971) An experimental investigation into the decay of pollen and spores in various soil types. In: Brooks J, Grant PR, Muir MD, Van Gijzel P (eds) Sporopollenin. Academic Press, London, New York, p. 446–479CrossRefGoogle Scholar
  37. Havinga AJ (1984) A 20–year experimental investigation into the differential corrosion susceptibility of pollen and spores in various soil types. Pollen Spores 26: 541–558Google Scholar
  38. He X, Dai J, Wu Q (2016) Identification of Sporopollenin as the Outer Layer of Cell Wall in Microalga Chlorella protothecoides. Front Microbiol 7: 1047Google Scholar
  39. Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch–Radivo A, Ulrich S (2009) Pollen Terminology. An illustrated Handbook. Springer, ViennaGoogle Scholar
  40. Hemsley AR, Barrie PJ, Chaloner WG, Scott AC (1993) The composition of sporopollenin and its use in living and fossil plant systematics. Grana 32, Suppl 1: 2–11CrossRefGoogle Scholar
  41. Huysmans S, El–Ghazaly G, Smets E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. Bot Rev 64: 240–272CrossRefGoogle Scholar
  42. Jardine PE, Fraser WT, Lomax BH, Gosling WD (2015) The impact of oxidation on spore and pollen chemistry. J Micropalaeontol 24: 139–149CrossRefGoogle Scholar
  43. John JF (1814) Ueber den Befruchtungsstaub, nebst einer Analyse des Tulpenpollens. J Chem Phys 12: 244–252Google Scholar
  44. Johnson ST, Edwards TJ (2000) The structure and function of orchid pollinaria. Plant Syst Evol 222: 243–269CrossRefGoogle Scholar
  45. Klaus W (1960) Sporen der karnischen Stufe der ostalpinen Trias. In: Oberhauser R, Kristan–Tollmann E, Kollmann K, Klaus W (eds) Beiträge zur Mikropaläontologie der alpinen Trias. Jahrb Geol Bundesanstalt, Sonderband 5: 107–184Google Scholar
  46. Klaus W (1987) Einführung in die Paläobotanik. Fossile Pflanzenwelt und Rohstoffbildung, Band I. Grundlagen – Kohlebildung – Arbeitsmethoden/Palynologie. Deuticke, WienGoogle Scholar
  47. Knox RB, McConchie CA (1986) Structure and function of compound pollen. In: Blackmore S, Ferguson IK (eds) Pollen and Spores, Form and Function. Linnean Society of London, London, p. 265–282Google Scholar
  48. Lallemand B, Erhardt M, Heitz T, Legrand M (2013) Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol 162: 616–625CrossRefPubMedCentralGoogle Scholar
  49. Leslie AB (2010) Flotation preferentially selects saccate pollen during conifer pollination. New Phytol 188: 273–279CrossRefGoogle Scholar
  50. Liu L, Fan X (2013) Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis. Plant Mol Biol 83: 165–175CrossRefGoogle Scholar
  51. Maeda Y (1984) The presence and location of sporopollenin in fruiting bodies of the cellular slime moulds. J Cell Sci 66: 297–308Google Scholar
  52. Pacini E, Franchi GG (1991) Role of the tapetum in pollen and spore dispersal. Plant Syst Evol, Suppl. 7: 1–11Google Scholar
  53. Pacini E, Hesse M (2005) Pollenkitt – its composition, forms and functions. Flora 200: 399–415CrossRefGoogle Scholar
  54. PalDat – a palynological database (2000 onwards,
  55. Phuphumirat W, Gleason FH, Phongpaichit S, Mildenhall DC (2011) The infection of pollen by zoosporic fungi in tropical soils and its impact on pollen preservation: a preliminary study. Nova Hedwigia 92: 233–244CrossRefGoogle Scholar
  56. Phuphumirat W, Zetter R, Hofmann C–C, Ferguson DK (2015) Pollen degradation in mangrove sediments: A short–term experiment. Rev Palaeobot Palynol 221: 106–116CrossRefGoogle Scholar
  57. Playford G, Dettmann ME (1996) Spores. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation, vol. 1, AASP Foundation, Dallas, p. 227–260Google Scholar
  58. Pozhidaev AE (2000a) Pollen variety and aperture patterning. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and Spores: Morphology and Biology. Royal Botanic Gardens, Kew, p. 205–225Google Scholar
  59. Pozhidaev AE (2000b) Hypothetical way of pollen aperture patterning. 2: Formation of polycolpate patterns and pseudoaperture geometry. Rev Palaeobot Palynol 109: 235–254CrossRefGoogle Scholar
  60. Praglowski J (1975) Importance de la mise au point des terms “structure” de l‛exine. Bull Soc Bot France, Coll Palynologie 122: 75–78Google Scholar
  61. Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143: 1–81CrossRefGoogle Scholar
  62. Quilichini TD, Douglas CJ, Samuels AL (2014) New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann Bot 114: 1189–120CrossRefPubMedCentralGoogle Scholar
  63. Reitsma TJ (1969) Size modification of recent pollen grains under different treatments. Rev Palaeobot Palynol 9: 175–202CrossRefGoogle Scholar
  64. Riding JB, Kyffin–Hughes JE (2004) A review of the laboratory preparation of palynomorphs with description of an effective non–acid technique. Rev Bras Paleontolog 7: 13–44CrossRefGoogle Scholar
  65. Rowley JR, Skvarla JJ (2000) The elasticity of the exine. Grana 37: 1–7CrossRefGoogle Scholar
  66. Rubinstein CV, Gerrienne P, de la Puente GS, Astini RA, Steemans P (2010) Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol 188: 365–369CrossRefPubMedCentralGoogle Scholar
  67. Schwendemann AB, Wang G, Mertz ML, McWilliams RT, Thatcher SL, Osborn JM (2007) Aerodynamics of saccate pollen and its implications for wind pollination. Am J Bot 94: 1371–1381CrossRefPubMedCentralGoogle Scholar
  68. Simons J, Van Beem AP, De Vries PJR (1983) Structure and chemical composition of the spore wall in Spirogyra (Zygnemataceae, Chlorophyceae). Acta Bot Neerl 31: 359–370CrossRefGoogle Scholar
  69. Skvarla JJ, Rowley JR, Chissoe WF (1997) Exine resistance to fungal infestations in Strelitziaceae. Taiwania 42: 17–27Google Scholar
  70. Steemans P, Lepot K, Marshall CP, Le Herisseé A, Javaux EJ (2010) FTIP characterisation of the chemical composition of Silurian miospores (cryptospores and trilete spores) from Gotland, Sweden. Rev Palaeobot Palynol 162: 577–590CrossRefGoogle Scholar
  71. Takahashi M (1995) Development of structure–less pollen wall in Ceratophyllum demersum L. (Ceratophyllaceae). J Plant Res 108: 205–208CrossRefGoogle Scholar
  72. Traverse A (1988) Paleopalynology. Unwin Hyman, BostonGoogle Scholar
  73. Traverse A (2007) Paleopalynology. 2nd ed, Springer, DordrechtGoogle Scholar
  74. Tryon AF, Lugardon B (1991) Spores of the Pteridophyta: Surface, wall structure and diversity based on electron microscopy studies. Springer, New YorkGoogle Scholar
  75. Tsou C–H, Fu Y–L (2002) Tetrad pollen formation in Annona (Annonaceae): Proexine formation and binding mechanism. Am J Bot 89: 734–747CrossRefGoogle Scholar
  76. Twiddle CL, Bunting MJ (2010) Experimental investigations into the preservation of pollen grains: A pilot study of four pollen types. Rev Palaeobot Palynol 162: 621–630CrossRefGoogle Scholar
  77. Ueno R (2009) Visualization of sporopollenin–containing pathogenic green micro–alga Prototheca wickerhamii by fluorescent in situ hybridization (FISH). Can J Micro 55: 465–472CrossRefGoogle Scholar
  78. Ulrich S, Hesse M, Weber M, Halbritter H (2017) Amorphophallus: New insights into pollen morphology and the chemical nature of the pollen wall. Grana 56: 1–36CrossRefGoogle Scholar
  79. Van Bergen PF, Collinson ME, de Leeuw JW (1993) Chemical composition and ultrastructure of fossil and extant salvinialean microspore massulae and megaspores. Grana 32, Suppl 1: 18–30CrossRefGoogle Scholar
  80. Van Campo M, Lugardon B (1973) Structure grenue infratectal de l’ectexine des pollens de quelques Gymnospermes et Angiospermes. Pollen Spores 15: 171–189Google Scholar
  81. Versteegh GJM, Blokker P, Bogus KA, Harding IC, Lewis J, Oltmanns S, Rochon A, Zonneveld KAF (2012) Infra red spectroscopy, flash pyrolysis, thermally assisted hydrolysis and methylation (THM) in the presence of tetramethylammonium hydroxide (TMAH) of cultured and sediment–derived Lingulodinium polyedrum (Dinoflagellata) cyst walls. Org Geochem 43: 92–102CrossRefGoogle Scholar
  82. Verstraete B, Moon H–K, Smets E, Huysmans S (2014) Orbicules in flowering plants: A phylogenetic perspective on their form and function. Bot Rev 80: 107–134CrossRefGoogle Scholar
  83. Vinckier S, Cadot P, Smets E (2005) The manifold characters of orbicules: structural diversity, systematic significance, and vectors for allergens. Grana 44: 300–307CrossRefGoogle Scholar
  84. Walker JW (1976) Evolutionary significance of the exine in the pollen of primitive angiosperms. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London, p. 251–308Google Scholar
  85. Wallace S, Chater CC, Kamisugi Y, Cuming AC, Wellman CH, Beerling DJ, Fleming AJ (2015) Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway. New Phytol 205: 390–401CrossRefGoogle Scholar
  86. Weber M, Halbritter H (2007) Exploding pollen in Montrichardia arborescens (Araceae). Plant Syst Evol 263: 51–57CrossRefGoogle Scholar
  87. Wellman CH (2010) The invasion of the land by plants: when and where? New Phytol 188: 306–309CrossRefGoogle Scholar
  88. Wiermann R, Ahlers F, Schmitz–Thom I (2001) Sporopollenin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers 1: Lignin, Humic Substances and Coal, Wiley–VCH Weinheim, p. 209–227Google Scholar
  89. Yule BL, Roberts S, Marshall JEA (2000) The thermal evolution of sporopollenin. Org Geochem 31: 859–870CrossRefGoogle Scholar
  90. Zetzsche F, Kalt P, Leichti J, Ziegler E (1931) Zur Konstitution des Lycopodiumsporonins, des Tasmanins und des Lange–Sporonins. J Prakt Chem 148: 67–84Google Scholar

Copyright information

© The Author(s) 2018

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Heidemarie Halbritter
    • 1
  • Silvia Ulrich
    • 1
  • Friðgeir Grímsson
    • 2
  • Martina Weber
    • 1
  • Reinhard Zetter
    • 2
  • Michael Hesse
    • 1
  • Ralf Buchner
    • 1
  • Matthias Svojtka
    • 1
  • Andrea Frosch-Radivo
    • 1
  1. 1.Division of Structural and Functional BotanyDepartment of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
  2. 2.Department of PalaeontologyUniversity of ViennaViennaAustria

Personalised recommendations