Palynology: History and Systematic Aspects

  • Heidemarie Halbritter
  • Silvia Ulrich
  • Friðgeir Grímsson
  • Martina Weber
  • Reinhard Zetter
  • Michael Hesse
  • Ralf Buchner
  • Matthias Svojtka
  • Andrea Frosch-Radivo
Open Access


Palynology is the science of palynomorphs, a general term for all entities found in palynological preparations (e.g., pollen, spores, cysts, diatoms). A dominating object of the palynomorph spectrum is the pollen grain. The term palynology was coined by Hyde and Williams (1955; Fig. 1). It is a combination of the Greek verb paluno (пαλύνω, “I strew or sprinkle”), palunein (пαλύνειν, “to strew or sprinkle”), the Greek noun pale (пαλƞ, in the sense of “dust, fine meal,” and very close to the Latin word pollen, meaning “fine flour, dust”), and the Greek noun logos (λογος, “word, speech”).


  1. Anger E, Weber M (2006) Pollen wall formation in Arum alpinum. Ann Bot 97: 239–244CrossRefGoogle Scholar
  2. Blackmore S (1992) Scanning electron microscopy in palynology. In: Nilsson S, Praglowski J (eds) Erdtman’s Handbook of Palynology. 2nd edition, Munksgaard, Copenhagen, p. 403–431Google Scholar
  3. Blackmore S (2000) The palynological compass: the contribution of palynology to systematics. In: Nordenstam B, El–Ghazaly G, Kassas M (eds) Plant Systematics for the 21st Century. Portland Press, London, p. 161–177Google Scholar
  4. Blackmore S, Wortley A, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174: 483–498CrossRefGoogle Scholar
  5. Blackmore S, Wortley AH, Skvarla JJ, Gabarayeva NI, Rowley JR (2010) Developmental origins of structural diversity in pollen walls of Compositae. Plant Syst Evol 284: 17–32CrossRefGoogle Scholar
  6. Bradley DE (1958) The study of pollen grain surfaces in the Electron Microscope. New Phytol 57: 226–229CrossRefGoogle Scholar
  7. Brown R (1828) A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Richard Taylor, LondonGoogle Scholar
  8. Brown R (1833) On the organs and mode of fecundation in Orchideae and Asclepiadeae. In: The miscellaneous botanical works by Robert Brown. The Ray Society, London (1866)Google Scholar
  9. Bryant VM (2013) Pollen and spore use in forensics. In: Jamieson J, Moenssens A (eds) Wiley Encyclopedia of Forensic Science, 2nd edition, John Wiley & Sons Ltd, Chichester, U.K.Google Scholar
  10. Camerarius R J (1694) Ueber das Geschlecht der Pflanzen (De sexu plantarum epistola). Uebersetzt und herausgegeben von M. Mobius. Ostwald’s Klassiker der exakten Wissenschaften 105Google Scholar
  11. Campbell DH (1897) A morphological study of Naias and Zannichellia. Proc Calif Acad, Bot 3(1): 1–70Google Scholar
  12. Candolle AP, Sprengel K (1821) Elements of the philosophy of plants. Edinburgh, printed for William BlackwoodGoogle Scholar
  13. Cavolini F (1792) Zosterae oceanicae Linnei ANHƩIƩ. Contemplatus est Philippus Caulinus Neapolitanus. Annis 1787 et 1791. NeapoliGoogle Scholar
  14. Doyle JA (2012) Molecular and fossil evidence on the origin of Angiosperms. Ann Rev Earth Planet Sci 40: 301–326CrossRefGoogle Scholar
  15. Doyle JA, Endress PK (2010) Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. J Syst Evol 48: 1–35CrossRefGoogle Scholar
  16. Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera Palmarum. The Evolution and Classification of Palms. Kew Publishing, KewGoogle Scholar
  17. Ducker S, Knox B (1985) Pollen and pollination: a historical review. Taxon 34: 401–419CrossRefGoogle Scholar
  18. Ehrenberg CG (1838) Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Abh Kgl Akademie Wiss Berlin 1838: 59–147Google Scholar
  19. Ehrlich HG, Hall JW (1959) The ultrastructure of eocene pollen. Grana Palynol 2: 32–35CrossRefGoogle Scholar
  20. Erdtman G (1943) An introduction to pollen analysis. Chronica Botanica, Waltham, MassGoogle Scholar
  21. Erdtman G (1947) Suggestions for the classification of fossil and recent pollen grains and spores. Svensk Bot Tidskr 41: 104–114Google Scholar
  22. Erdtman G (1952) Pollen Morphology and Plant Taxonomy. Angiosperms. Almqvist & Wiksell, StockholmGoogle Scholar
  23. Erdtman G (1957) Pollen and Spore Morphology. Plant Taxonomy. Gymnospermae, Pteridophyta, Bryophyta. Almqvist & Wiksell, StockholmGoogle Scholar
  24. Erdtman G (1969) Handbook of Palynology – An Introduction to the Study of Polllen Grains and Spores. Munksgaard, CopenhagenGoogle Scholar
  25. Erdtman G, Dunbar A (1966) Notes on electron micrographs illustrating the pollen morphology in Armeria maritima and Armeria sibirica. Grana Palynol 6: 338–354CrossRefGoogle Scholar
  26. Erdtman G, Straka H (1961) Cormophyte spore classification. Geol Fören Förenhandl 83: 65–78CrossRefGoogle Scholar
  27. Erdtman G, Vishnu-Mittre (1956) On terminology in pollen and spore morphology. The Palaeobotanist 5: 109–111Google Scholar
  28. Fægri K, Iversen J (1950) Textbook of modern pollen analysis. Munksgaard, CopenhagenGoogle Scholar
  29. Fægri K, Iversen J (1989) Textbook of Pollen analysis. 4th edition, John Wiley & Sons, ChichesterGoogle Scholar
  30. Fernandez-Moran H, Dahl AO (1952) Electron microscopy of ultrathin frozen sections of pollen grains. Science 116: 465–467CrossRefGoogle Scholar
  31. Fischer H (1890) Beiträge zur vergleichenden Morphologie der Pollenkörner. Thesis, BreslauGoogle Scholar
  32. Friis EM, Crane PR, Pedersen KR (2011) Early Flowers and Angiosperm Evolution. Cambridge University Press, CambridgeGoogle Scholar
  33. Fritzsche J (1834) Ueber den Pollen der Pflanzen und das Pollenin. Ann Phys 108: 481–492Google Scholar
  34. Fritzsche J (1837) Über den Pollen. Mém Sav Étrang Acad Sci Pétersbourg 3: 649–672Google Scholar
  35. Furness CA, Banks H (2010) Pollen evolution in the early–divergent monocot order Alismatales. Int J Plant Sci 171: 713–739CrossRefGoogle Scholar
  36. Furness CA, Rudall PJ (1999a) Microsporogenesis in Monocotyledons. Ann Bot 84: 475–499CrossRefGoogle Scholar
  37. Furness CA, Rudall PJ (1999b) Inaperturate pollen in monocotyledons. Int J Pl Sci 160: 395–414CrossRefGoogle Scholar
  38. Furness CA, Rudall PJ (2004) Pollen aperture evolution – a crucial factor for eudicot success? Trends Plant Sci 9: 154–158CrossRefGoogle Scholar
  39. Gabarayeva NI, Grigorjeva VV (2010) Sporoderm ontogeny in Chamaedorea microspadix (Arecaceae): self–assembly as the underlying cause of development. Grana 49: 91–114CrossRefGoogle Scholar
  40. Gabarayeva NI, Grigorjeva VV, Rowley JR (2010) A new look at sporoderm ontogeny in Persea americana and the hidden side of development. Ann Bot 105: 939–955CrossRefGoogle Scholar
  41. Gee CT (2001) The mangrove palm Nypa in the geologic past of the New World. Wetl Ecol Manag 9: 181–194Google Scholar
  42. Gleditsch JG (1751) Essai d’une Fécondation artificielle, fait sur l’espèce de Palmier qu’on nomme, Palma dactylifera folio flabelliformi. – Histoire de l’Académie Royale des Sciences et Belles Lettres de Berlin année 1749: 103–108Google Scholar
  43. Gleditsch JG (1765) Kurze Nachricht von einer künstlichen wohlgelungenen Befruchtung eines Palmbaumes im Königlichen Kräutergarten zu Berlin. – Vermischte Physikalisch–Botanisch–Ökonomische Abh 1: 94–104Google Scholar
  44. Göppert HR (1837) De floribus in statu fossili, commentatio botanica. Thesis, BreslauGoogle Scholar
  45. Göppert HR (1848) Über das Vorkommen von Pollen im fossilen Zustande. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 11: 338–340Google Scholar
  46. Govaerts R (2003) How many species of seed plants are there? – a response. Taxon 52: 583–584CrossRefGoogle Scholar
  47. Grew N (1682) The Anatomy of plants, with an idea of a philosophical history of plants, and several other lectures, read before the Royal Society. W. Rawlins, LondonGoogle Scholar
  48. Grímsson F, Grimm GW, Zetter R, Denk T (2016) Cretaceous and Paleogene Fagaceae from North America and Greenland: evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae. Acta Palaeobotanica 56: 247–305CrossRefGoogle Scholar
  49. Grímsson F, Grimm GW, Zetter R (2017a) Tiny pollen grains: first evidence of Saururaceae from the Late Cretaceous of western North America. Peer J 5:e3434 Scholar
  50. Grímsson F, Kapli P, Hofmann C, Zetter R, Grimm GW (2017b) Eocene Loranthaceae pollen pushes back divergence ages for major splits in the family. PeerJ 5:e3373 Scholar
  51. Grímsson F, Zetter R, Halbritter H, Grimm GW (2014) Aponogeton pollen from the Cretaceous and Paleogene of North America and West Greenland: Implications for the origin and palaeobiogeography of the genus. Rev Palaeobot Palynol 200: 161–187CrossRefGoogle Scholar
  52. Guignard L (1891) Nouvelles études sur la fécondation. Ann Sc Nat, Bot ser 7, 14: 163–296Google Scholar
  53. Guignard L (1899) Sur les antherozoides et la double copulation sexuelle chez les végétaux angiosperms. Rev Gen Bot 11: 129–135Google Scholar
  54. Halbritter H, Hesse M (2004) Principal modes of infoldings in tricolp(or)ate Angiosperm pollen. Grana 43: 1–14CrossRefGoogle Scholar
  55. Hao G, Chye M–L, Saunders RMK (2001) A phylogenetic analysis of the Schisandraceae based on morphology and nuclear ribosomal ITS sequences. Bot J Linn Soc 135: 401–411CrossRefGoogle Scholar
  56. Harley MM, Baker WJ (2001) Pollen aperture morphology in Arecaceae: application within phylogenetic analyses, and a summary of the fossil record of palm–like pollen. Grana 40: 45–77CrossRefGoogle Scholar
  57. Harley MM, Ferguson IK (1990) The role of the SEM in pollen morphology and plant systematics. In: Claugher D (ed) Scanning Electron Microscopy in Taxonomy and Functional Morphology. Syst Ass Special Volume 41: 45–68. Clarendon Press, OxfordGoogle Scholar
  58. Hay WW, Sandberg PA (1967) The Scanning Electron Microscope, a major break–through for micropaleontology. Micropaleontology 13: 407–418CrossRefGoogle Scholar
  59. Hell SW (2009) Microscopy and its focal switch. Nature Methods 6: 24–32CrossRefGoogle Scholar
  60. Heslop-Harrison J (1975) The physiology of the pollen grain surface. Proc R Soc, London B 190: 275–299Google Scholar
  61. Hesse M (2006a) Reason and consequences of the lack of a sporopollenin ektexine in Aroideae (Araceae). Flora 201: 421–428CrossRefGoogle Scholar
  62. Hesse M (2006b) Conventional and novel modes of exine patterning in members of the Araceae – the consequence of ecological paradigm shifts? Protoplasma 228: 145–149CrossRefGoogle Scholar
  63. Hesse M, Blackmore S (2013) Editorial: Preface to the Special Focus manuscripts. Plant Syst Evol 299: 1011–1012CrossRefGoogle Scholar
  64. Hesse M, Weber M, Halbritter H (2000) A comparative study of the polyplicate pollen types in Arales, Laurales, Zingiberales and Gnetales. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. Royal Botanic Gardens, Kew, p. 227–239Google Scholar
  65. Hofmeister W (1849) Die Entstehung des Embryo der Phanerogamen. Friedrich Hofmeister, LeipzigGoogle Scholar
  66. Hooke R (1665) Micrographia, or, Some physiological descriptions of minute bodies made by magnifying glasses, with observations and inquiries thereupon. Printed by Jo. Martyn and Ja. Allestry, LondonGoogle Scholar
  67. Hyde HA (1955) Oncus, a new term in pollen morphology. New Phytol 54: 255CrossRefGoogle Scholar
  68. Iversen J, Troels-Smith J (1950) Pollenmorfologiske definitioner og typer. Pollenmorphologische Definitionen und Typen. Danm Geol Unders, ser 4, 3: 1–54Google Scholar
  69. John JF (1814) Ueber den Befruchtungsstaub, nebst einer Analyse des Tulpenpollens. J Chem Phys 12: 244–252Google Scholar
  70. Jones GD, Bryant VM Jr. (1996) Melissopalynology. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation, vol 3, AASP Foundation, Dallas, p. 933–938Google Scholar
  71. Kesseler R, Harley MM (2004) Pollen. The hidden sexuality of flowers. Papadakis Publisher, LondonGoogle Scholar
  72. Knox RB (1984) The pollen grain. In: Johri BM (ed) Embryology of Angiosperms. Springer, BerlinCrossRefGoogle Scholar
  73. Kölreuter JG (1761-1766) Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betreffenden Versuchen und Beobachtungen. 4 Vol., Gleditsch, LeipzigGoogle Scholar
  74. Kölreuter JG (1806) De antherarum pulvere. Nova acta Academiae Scientiarum Imperialis Petropolitanae 15: 359–398Google Scholar
  75. Kölreuter JG (1811) Dissertationis de antherarum pulvere continuato. Mem Acad Sci Petersbourg 3: 159–199Google Scholar
  76. Kremp GOW (1968) Morphologic Encyclopedia of Palynology. 2nd edition, Arizona Press, TucsonGoogle Scholar
  77. Lindley J (1836) A natural system of botany; or, A systematic view of the organization, natural affinities, and geographical distribution of the whole vegetable kingdom: together with the uses of the most important species in medicine, the arts, and rural or domestic economy (2nd edition), Longman, LondonGoogle Scholar
  78. Linnaeus C (1750) Sponsalia plantarum. J. G. Wahlbom, Stockholm. Facs. edition, Rediviva No. 19, Stockholm 1971Google Scholar
  79. Malpighi M (1901) Die Anatomie der Pflanzen. I und II Theil, London 1675 und 1679. Bearbeitet von M. Möbius. Ostwald’s Klassiker der exakten Wissenschaften Nr. 120, pp. 163Google Scholar
  80. Manten AA (1966) Half a century of modern palynology. Earth-Sci Rev 2: 277–316CrossRefGoogle Scholar
  81. Mendes MM, Dinis J, Pais J, Friis EM (2014) Vegetational composition of the Early Cretaceous Chicalhão flora (Lusitanian Basin, western Portugal) based on palynological and mesofossil assemblages. Rev Palaeobot Palynol 200: 65–81CrossRefGoogle Scholar
  82. Mildenhall DC, Wiltshire PEJ, Bryant VM (2006) Forensic palynology: Why do it and how it works. Forensic Sci Int 163: 163–172CrossRefGoogle Scholar
  83. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. 2nd edition. Blackwell Scientific Publication, OxfordGoogle Scholar
  84. Mühlethaler K (1953) Untersuchungen über die Struktur der Pollenmembran. Mikroskopie 8: 103–110Google Scholar
  85. Mühlethaler K (1955) Die Struktur einiger Pollenmembranen. Planta 46: 1–13CrossRefGoogle Scholar
  86. Nadot S, Forchioni A, Penet L, Sannier J, Ressayre A (2006) Links between early pollen development and aperture pattern in monocots. Protoplasma 228: 55–64CrossRefGoogle Scholar
  87. Nägeli K (1842) Zur Entwicklungsgeschichte des Pollens bei den Phanerogamen. Orell, Füssli & Comp., ZürichGoogle Scholar
  88. Nawaschin S (1898) Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. Bull Acad Imp Sci St. Petersbourg, ser. 5, 9: 377–382Google Scholar
  89. Pettitt JM, Chaloner WG (1964) The ultrastructure of the Mesozoic pollen Classopollis. Pollen Spores 6: 611–620Google Scholar
  90. Potonié R (1934) I. Zur Morphologie der fossilen Pollen und Sporen. Arb Inst Paläobotanik Petrographie Brennsteine 4: 5–24Google Scholar
  91. Potonié R (1956) Synopsis der Gattungen der Sporae dispersae, I. Teil: Sporites. Beih Geol Jahrb 23: 1–103Google Scholar
  92. Punt W, Blackmore S, Nilsson S, Le Thomas A (1994) Glossary of Pollen and Spore Terminology. LPP Foundation, Laboratory of Palaeobotany and Palynology, University of Utrecht, Utrecht. LPP Contributions Series 1Google Scholar
  93. Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143: 1–81CrossRefGoogle Scholar
  94. Purkinje JE (1830) De Cellulis antherarum fibrosis nec non de granorum pollinarium formis: Commentatio phytotomica. Grueson, BreslauGoogle Scholar
  95. Reille M (1992) Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  96. Reille M (1995) Pollen et Spores d’Europe et d’Afrique du Nord, Supplement 1. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  97. Reille M (1998) Pollen et Spores d’Europe et d’Afrique du Nord, Supplement 2. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  98. Reinsch P (1884) Micro-Palaeophytologia formationis carboniferae. Krische, ErlangenGoogle Scholar
  99. Reitsma TJ (1970) Suggestions towards unification of descriptive terminology of angiosperm pollen grains. Rev Palaeobot Palynol 10: 39–60CrossRefGoogle Scholar
  100. Rowley JR, Flynn JJ (1966) Single–stage carbon replicas of microspores. Stain Technol 41: 287–290CrossRefGoogle Scholar
  101. Sarawichit P (2012) Pollen and orbicular walls of selected species of Justicieae (Acanthaceae) and their systematic significance. Thesis, University of ViennaGoogle Scholar
  102. Schacht H (1856/59) Lehrbuch der Anatomie und Physiologie der Gewächse. 2 Vol., Müller, BerlinGoogle Scholar
  103. Schopf JM (1957) Spores and related plant microfossils – Paleozoic. In: Ladd HS (ed) Treatise on marine ecology and paleoecology 2, Paleoecology: Geological Scociety of America Memoir 67/2, p. 703–707Google Scholar
  104. Schopf JM (1964) Practical problems and principles in study of plant microfossils. In: Cross, AT (ed) Palynology in oil exploration – A symposium: Society of Economic Paleontologists and Mineralogists Special Publication 11, p. 29–57CrossRefGoogle Scholar
  105. Scotland RW, Wortley AH (2003) How many species of seed plants are there? Taxon 52: 101–104CrossRefGoogle Scholar
  106. Sprengel CK (1793) Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. Vieweg, BerlinGoogle Scholar
  107. Sprengel K (1804) Anleitung zur Kenntniß der Gewächse. In Briefen. Erste Sammlung, Kimmel, HalleGoogle Scholar
  108. Stolze GH (1816) Der Pollen der Pflanzen in chemischer Hinsicht; nebst einer Analyse des Pollens der Haselnusstaude (Corylus avellana Linn.). Jahrb Pharm 17: 159–187Google Scholar
  109. Strasburger E (1884) Neue Untersuchungen über den Befruchtungsvorgang bei den Phanerogamen als Grundlage für eine Theorie der Zeugung. Fischer, JenaGoogle Scholar
  110. Stuessy TF (1979) Ultrastructural data for the practicing plant systematist. Am Zool 19: 621–635CrossRefGoogle Scholar
  111. Stuessy TF (2009) Plant Taxonomy: The Systematic Evaluation of Comparative Data. 2nd edition, Columbia University Press, New YorkGoogle Scholar
  112. Stuessy TF, Funk VA (2013) New trends in plant systematics – Introduction. Taxon 62: 873–875CrossRefGoogle Scholar
  113. Thorne RF (2002) How many species of seed plants are there? Taxon 51: 511–522CrossRefGoogle Scholar
  114. Thornhill JW, Matta RK, Wood WH (1965) Examining three–dimensional microstructures with the scanning electron microscope. Grana Palynol 6: 3–6CrossRefGoogle Scholar
  115. Traverse A (2007) Paleopalynology. 2nd ed, Springer, DordrechtGoogle Scholar
  116. Ulrich S, Hesse M, Bröderbauer D, Bogner J, Weber M, Halbritter H (2013) Calla palustris (Araceae): New insights with special regard to its controversial systematic position and to closely related genera. Taxon 62: 701–712CrossRefGoogle Scholar
  117. Ulrich S, Hesse M, Bröderbauer D, Wong SY, Boyce PC (2012) Schismatoglottis and Apoballis (Araceae: Schismatoglottideae): A new example for the significance of pollen morphology in Araceae systematics. Taxon 61: 281–292Google Scholar
  118. Ulrich S, Hesse M, Weber M, Halbritter H (2017) Amorphophallus: New insights into pollen morphology and the chemical nature of the pollen wall. Grana 56: 1–36CrossRefGoogle Scholar
  119. Von Grotthuss T (1814) Analysis des Tulpensamenstaubs. J Chem Phys 11: 281–380Google Scholar
  120. Von Mohl H (1835) Sur la structure et les formes des grains de pollen. Ann Sci nat 2. Ser., 3: 148–180, 220–236, 304–346Google Scholar
  121. Von Post L (1916) Einige südschwedische Quellmoore. Bull Geol Inst Univ Uppsala 15: 219–278Google Scholar
  122. Weber M, Ulrich S (2010) The endexine: a frequently overlooked pollen wall layer and a simple method for detection. Grana 49: 83–90CrossRefGoogle Scholar
  123. Weber M, Ulrich S (2016) Forensic Palynology: How pollen in dry grass can link to a crime scene. In: Kars H, van den Eijkel L (eds) Soil in Criminal and Environmental Forensics: Proceedings of the Soil Forensics Special, 6th European Academy of Forensic Science Conference. The Hague, Springer, p. 15–23CrossRefGoogle Scholar
  124. Weber M, Ulrich S (2017) PalDat 3.0 – second revision of the database, including a free online publication tool. Grana 56: 257–262CrossRefGoogle Scholar
  125. Wodehouse RP (1928) The phylogenetic value of pollen grain characters. Ann Bot 42: 891–934CrossRefGoogle Scholar
  126. Wodehouse RP (1935) Pollen grains. Their structure, identification and significance in science and medicine. McGraw–Hill, New YorkGoogle Scholar
  127. Zetter R, Hofmann C (2001) New aspects of the palynoflora of the lowermost Eocene (Krappfeld Area, Carinthia). In: Piller WE, Rasser MW (eds) Paleogene of the Eastern Alps. Österreichische Akademie der Wissenschaften, Schriftenreihe der Erdwissenschaftlichen Kommissionen 14, p. 473–507Google Scholar
  128. Zetzsche F, Huggler K (1928) Untersuchungen über die Membran der Sporen und Pollen. I. 1. Lycopodium clavatum L. Ann Chem 461: 89–108CrossRefGoogle Scholar
  129. Zetzsche F, Kalt P, Leichti J, Ziegler E (1931) Zur Konstitution des Lycopodiumsporonins, des Tasmanins und des Lange–Sporonins. J Prakt Chem 148: 67–84Google Scholar
  130. Zetzsche F, Vicari H (1931) Untersuchungen über die Membran der Sporen und Pollen II, Lycopodium clavatum L., Untersuchungen über die Membran der Sporen und Pollen III. Picea orientalis, Pinus silvestris L., Corylus avellana L. Helv Chim Acta 14: 58–67Google Scholar

Copyright information

© The Author(s) 2018

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Heidemarie Halbritter
    • 1
  • Silvia Ulrich
    • 1
  • Friðgeir Grímsson
    • 2
  • Martina Weber
    • 1
  • Reinhard Zetter
    • 2
  • Michael Hesse
    • 1
  • Ralf Buchner
    • 1
  • Matthias Svojtka
    • 1
  • Andrea Frosch-Radivo
    • 1
  1. 1.Division of Structural and Functional BotanyDepartment of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
  2. 2.Department of PalaeontologyUniversity of ViennaViennaAustria

Personalised recommendations