Advertisement

Reproductive, Dispersal and Recruitment Strategies in Australian Seagrasses

  • Craig D. H. Sherman
  • Timothy M. Smith
  • Paul H. York
  • Jessie C. Jarvis
  • Leonardo Ruiz-Montoya
  • Gary A. Kendrick
Chapter

Abstract

Seagrasses are a relatively small group of marine angiosperms that have successfully colonised the oceans and includes monecious, dioecious and hermaphroditic species. They display a range of mating systems, dispersal mechanisms and recruitment strategies that have allowed them to adapt and survive within the marine environment. This includes a general reduction in the size and complexity of floral structures, and subsurface pollination (hydrophily) in the majority of species. Fertilisation occurs through water-dispersed pollen that is typically filamentous and sticky, however, recent work has also suggested that marine invertebrates may play a role in pollen movement and fertilisation. Seed size and morphology varies widely among species, from fleshy floating fruit (e.g. Posidonia) to small negatively buoyant seeds less than 0.5 mm (e.g. Halophila). Nearly all species retain some capacity of asexual reproduction through rhizome elongation or the production of asexual fragment or propagules that can be more widely dispersed. These differences in reproductive strategies have important effects on recruitment and dispersal potential and subsequent population dynamics. Direct estimates of dispersal and recruitment are inherently difficult to assess in seagrasses, but the use of novel genetic and predictive modelling approaches are providing new insights into these important processes. This chapter highlights the main reproductive strategies and adaptations seagrass have undergone in response to reproducing in a marine environment, with an emphasis on Australian seagrass species. We highlight the current state of knowledge in Australian seagrass reproductive biology and future directions in seagrass reproductive biology research.

References

  1. Ackerman J (1995) Convergence of filiform pollen morphologies in seagrasses: functional mechanisms. Evol Ecol 9:139–153.  https://doi.org/10.1007/BF01237753CrossRefGoogle Scholar
  2. Ackerman JD (2006) Sexual reproduction of seagrasses: pollination in the marine context. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, The Netherlands, pp 89–109Google Scholar
  3. Adams SM (1976) Feeding ecology of eelgrass fish communities. Trans Am Fish Soc 105:514–519CrossRefGoogle Scholar
  4. Ailstock MS, Shafer DJ, Magoun AD (2010) Effects of planting depth, sediment grain size, and nutrients on Ruppia maritima and Potamogeton perfoliatus seedling emergence and growth. Restor Ecol 18:574–583CrossRefGoogle Scholar
  5. Alagna A, Fernandez TV, Terlizzi A, Badalamenti F (2013) Influence of microhabitat on seedling survival and growth of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Estuar Coast Shelf Sci 119:119–125.  https://doi.org/10.1016/j.ecss.2013.01.009CrossRefGoogle Scholar
  6. Alberto F, Gouveia L, Arnaud-Haond S, Perez-Llorens JL, Duarte CM, Serrao EA (2005) Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa. Mol Ecol 14:2669–2681.  https://doi.org/10.1111/j.1365-294X.2005.02640.xCrossRefPubMedGoogle Scholar
  7. Alexandre A, Cabaço S, Santos R, Serrao EA (2006) Timing and success of reproductive stages in the seagrass Zostera noltii. Aquat Bot 85:219–223CrossRefGoogle Scholar
  8. Aller RC (1982) The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: Animal-sediment relations. Springer, pp 53–102Google Scholar
  9. Almela ED, Marbà N, Álvarez E, Santiago R, Martínez R, Duarte CM (2008) Patch dynamics of the Mediterranean seagrass Posidonia oceanica: implications for recolonisation process. Aquat Bot 89:397–403.  https://doi.org/10.1016/j.aquabot.2008.04.012CrossRefGoogle Scholar
  10. Baldwin JR, Lovvorn JR (1994) Expansion of seagrass habitat by the exotic Zostera japonica, and its use by dabbling ducks and brant in Boundary Bay, British Columbia. Mar Ecol Prog Ser 103:119–127CrossRefGoogle Scholar
  11. Balestri E, Lardicci C (2008) First evidence of a massive recruitment event in Posidonia oceanica: spatial variation in first-year seedling abundance on a heterogeneous substrate. Estuar Coast Shelf Sci 76:634–641CrossRefGoogle Scholar
  12. Balestri E, Piazzi L, Cinelli F (1998) Survival and growth of transplanted and natural seedlings of Posidonia oceanica (L.) Delile in a damaged coastal area. J Exp Mar Biol Ecol 228:209–225CrossRefGoogle Scholar
  13. Balestri E, Vallerini F, Lardicci C (2010) Effect of seed density and sediment nutrient heterogeneity on recruitment and early patch growth in the seagrass Cymodocea nodosa. Mar Ecol Prog Ser 417:63–72CrossRefGoogle Scholar
  14. Ballesteros E, Cebrian E, Garcia-Rubies A, Alcoverro T, Romero J, Font X (2005) Pseudovivipary, a new form of asexual reproduction in the seagrass Posidonia oceanica. Bot Mar 48:175–177CrossRefGoogle Scholar
  15. Baskin C, Baskin J (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination, 2nd edn. Academic Press, San DiegoGoogle Scholar
  16. Becheler R, Diekmann O, Hily C, Moalic Y, Arnaud-Haond S (2010) The concept of population in clonal organisms: mosaics of temporally colonized patches are forming highly diverse meadows of Zostera marina in Brittany. Mol Ecol 19:2394–2407.  https://doi.org/10.1111/j.1365-294X.2010.04649.xCrossRefPubMedPubMedCentralGoogle Scholar
  17. Bell SS, Robbins BD, Jensen SL (1999) Gap dynamics in a seagrass landscape. Ecosyst 2:493–504CrossRefGoogle Scholar
  18. Bell SS, Fonseca MS, Kenworthy WJ (2008) Dynamics of a subtropical seagrass landscape: links between disturbance and mobile seed banks. Landsc Ecol 23:67–74.  https://doi.org/10.1007/s10980-007-9137-zCrossRefGoogle Scholar
  19. Berković B, Cabaço S, Barrio JM, Santos R, Serrão EA, Alberto F (2014) Extending the life history of a clonal aquatic plant: dispersal potential of sexual and asexual propagules of Zostera noltii. Aquat Bot 113:123–129.  https://doi.org/10.1016/j.aquabot.2013.10.007CrossRefGoogle Scholar
  20. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055PubMedPubMedCentralCrossRefGoogle Scholar
  21. Billingham MR, Reusch TBH, Alberto F, Serrao EA (2003) Is asexual reproduction more important at geographical limits? A genetic study of the seagrass Zostera marina in the Ria Formosa, Portugal. Mar Ecol Prog Ser 265:77–83CrossRefGoogle Scholar
  22. Birch WR (1981) Morphology of germinating seeds of the seagrass Halophila spinulosa (R. Br.) Aschers. (Hydrocharitaceae). Aquat Bot 11:79–90CrossRefGoogle Scholar
  23. Blackburn NJ, Orth RJ (2013) Seed burial in eelgrass Zostera marina: the role of infauna. Mar Ecol Prog Ser 474:135–145.  https://doi.org/10.3354/meps10103CrossRefGoogle Scholar
  24. Boese B, Kaldy J, Clinton P, Eldridge P, Folger C (2009) Recolonization of intertidal Zostera marina L. (eelgrass) following experimental shoot removal. J Exp Mar Biol Ecol 374:69–77CrossRefGoogle Scholar
  25. Bonifacio RS, Montano MNE (1998) Inhibitory effects of mercury and cadmium on seed germination of Enhalus acoroides (Lf) Royle. Bull Environ Contam Toxicol 60:45–51PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bradbeer JW (1988) Seed viability and vigour. In: Seed dormancy and germination. Tertiary level biology. Springer, USA, pp 95–109.  https://doi.org/10.1007/978-1-4684-7747-4_8
  27. Brenchley JL, Probert RJ (1998) Seed germination responses to some environmental factors in the seagrass Zostera capricorni from eastern Australia. Aquat Bot 62:177–188CrossRefGoogle Scholar
  28. Bryant C, Davies J, Sankey T, Jarvis J, Rasheed M (2014) Long term seagrass monitoring in port curtis: quarterly seagrass assessments & permanent transect monitoring progress report 2009 to 2013, vol 14. James Cook University, Cairns, AustraliaGoogle Scholar
  29. Buckel CA, Blanchette CA, Warner RR, Gaines SD (2012) Where a male is hard to find: consequences of male rarity in the surfgrass Phyllospadix torreyi. Mar Ecol Prog Ser 449:121–132CrossRefGoogle Scholar
  30. Cabaço S, Santos R (2012) Seagrass reproductive effort as an ecological indicator of disturbance. Ecol Ind 23:116–122.  https://doi.org/10.1016/j.ecolind.2012.03.022CrossRefGoogle Scholar
  31. Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227.  https://doi.org/10.2307/2656714CrossRefPubMedGoogle Scholar
  32. Cambridge ML, Carstairs SA, Kuo J (1983) An unusual method of vegetative propagation in Australian zosteraceae. Aquat Bot 15:201–203.  https://doi.org/10.1016/0304-3770(83)90030-XCrossRefGoogle Scholar
  33. Campbell ML (2003) Recruitment and colonisation of vegetative fragments of Posidonia australis and Posidonia coriacea. Aquat Bot 76:175–184.  https://doi.org/10.1016/S0304-3770(03)00016-0CrossRefGoogle Scholar
  34. Campbell SJ, McKenzie LJ (2004) Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Estuar Coast Shelf Sci 60:477–490CrossRefGoogle Scholar
  35. Campey ML, Kendrick GA, Walker DI (2002) Interannual and small-scale spatial variability in sexual reproduction of the seagrasses Posidonia coriacea and Heterozostera tasmanica, southwestern Australia. Aquat Bot 74:287–297.  https://doi.org/10.1016/S0304-3770(02)00127-4CrossRefGoogle Scholar
  36. Caye G, Bulard C, Meinesz A, Loques F (1992) Dominant role of seawater osmotic pressure on germination in Cymodocea nodosa. Aquat bot 42:187–193CrossRefGoogle Scholar
  37. Chambers JC, MacMahon JA (1994) A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Ann Rev Ecol Syst, 263–292Google Scholar
  38. Charlesworth D, Wright SI (2001) Breeding systems and genome evolution. Curr Opin Genet Dev 11:685–690.  https://doi.org/10.1016/S0959-437X(00)00254-9CrossRefPubMedPubMedCentralGoogle Scholar
  39. Churchill AC (1983) Field studies on seed germination and seedling development in Zostera marina L. Aquat Bot 16:21–29CrossRefGoogle Scholar
  40. Churchill AC (1992) Growth characteristics of Zostera marina seedlings under anaerobic conditions. Aquat Bot 43:379–392CrossRefGoogle Scholar
  41. Conacher CA, Poiner IR, Butler J, Pun S, Tree DJ (1994a) Germination, storage and viability testing of seeds of Zostera capricorni Aschers. from a tropical bay in Australia. Aquat Bot 49:47–58CrossRefGoogle Scholar
  42. Conacher CA, Poiner IR, O’Donohue M (1994b) Morphology, flowering and seed production of Zostera capricorni Aschers. in subtropical Australia. Aquat Bot 49:33–46.  https://doi.org/10.1016/0304-3770(94)90004-3CrossRefGoogle Scholar
  43. Cook CDK (1999) The number and kinds of embryo-bearing plants which have become aquatic: a survey. Perspect Plant Ecol Evol Syst 2:79–102.  https://doi.org/10.1078/1433-8319-00066CrossRefGoogle Scholar
  44. Costanza R et al (1997) The value of the world’s ecosystem services and natural capital. Nat 387:253–260CrossRefGoogle Scholar
  45. Cox PA (1988) Hydrophilous pollination. Annu Rev Ecol Syst 19:261–279.  https://doi.org/10.1146/annurev.es.19.110188.001401CrossRefGoogle Scholar
  46. Coyer JA, Hoarau G, Kuo J, Tronholm A, Veldsink J, Olsen JL (2013) Phylogeny and temporal divergence of the seagrass family Zosteraceae using one nuclear and three chloroplast loci. Syst Biodivers 11:271–284.  https://doi.org/10.1080/14772000.2013.821187CrossRefGoogle Scholar
  47. Cumming E, Jarvis JC, Sherman CDH, York PH, Smith TM (2017) Seed germination in a southern Australian temperate seagrass. PeerJ 5:e3114.  https://doi.org/10.7717/peerj.3114CrossRefPubMedPubMedCentralGoogle Scholar
  48. Darnell KM, Booth DM, Koch EW, Dunton KH (2015) The interactive effects of water flow and reproductive strategies on seed and seedling dispersal along the substrate in two sub-tropical seagrass species. J Exp Mar Biol Ecol 471:30–40.  https://doi.org/10.1016/j.jembe.2015.05.006CrossRefGoogle Scholar
  49. den Hartog C (1970) The seagrass of the world. North Holland, AmsterdamGoogle Scholar
  50. Di Carlo G, Badalamenti F, Jensen AC, Koch EW, Riggio S (2005) Colonisation process of vegetative fragments of Posidonia oceanica (L.) Delile on rubble mounds. Mar Biol 147:1261–1270.  https://doi.org/10.1007/s00227-005-0035-0CrossRefGoogle Scholar
  51. Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Ann Rev 33:245–03Google Scholar
  52. Diaz-Almela E, Marba N, Alvarez E, Balestri E, Ruiz-Fernandez JM, Duarte CM (2006) Patterns of seagrass (Posidonia oceanica) flowering in the Western Mediterranean. Mar Biol 148:723–742.  https://doi.org/10.1007/s00227-005-0127-xCrossRefGoogle Scholar
  53. Dooley FD, Wyllie-Echeverria S, Van Volkenburgh E (2013) Long-term seed storage and viability of Zostera marina. Aquat Bot 111:130–134.  https://doi.org/10.1016/j.aquabot.2013.06.006CrossRefGoogle Scholar
  54. Dos Santos VM, Matheson FE (2017) Higher seagrass cover and biomass increases sexual reproductive effort: a rare case study of Zostera muelleri in New Zealand. Aquat Bot 138:29–36.  https://doi.org/10.1016/j.aquabot.2016.12.003CrossRefGoogle Scholar
  55. Du Z-Y, Wang Q-F (2014) Correlations of life form pollination mode and sexual system in aquatic angiosperms. PLoS ONE 9:e115653.  https://doi.org/10.1371/journal.pone.0115653CrossRefPubMedPubMedCentralGoogle Scholar
  56. Duarte C (2000) Marine biodiversity and ecosystem services: an elusive link. J Exp Mar Biol Ecol 250:117–131PubMedCrossRefGoogle Scholar
  57. Ehlers A, Worm B, Reusch TBH (2008) Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Mar Ecol Prog Ser 355:1–7.  https://doi.org/10.3354/meps07369CrossRefGoogle Scholar
  58. Erftemeijer PLA, Lewis RR III (2006) Environmental impacts of dredging on seagrasses: a review. Mar Pollut Bull 52:1553–1572.  https://doi.org/10.1016/j.marpolbul.2006.09.006CrossRefPubMedPubMedCentralGoogle Scholar
  59. Erftemeijer PLA, van Beek JKL, Ochieng CA, Jager Z, Los HJ (2008) Eelgrass seed dispersal via floating generative shoots in the Dutch Wadden Sea: a model approach. Mar Ecol Prog Ser 358:115–124.  https://doi.org/10.3354/meps07304CrossRefGoogle Scholar
  60. Eriksson O (1989) Seedling dynamics and life histories in clonal plants. Oikos 55:231–238.  https://doi.org/10.2307/3565427CrossRefGoogle Scholar
  61. Eriksson O, Ehrlén J (1992) Seed and microsite limitation of recruitment in plant populations. Oecologia 91:360–364.  https://doi.org/10.1007/BF00317624CrossRefPubMedGoogle Scholar
  62. Eriksson O, Fröborg H (1996) “Windows of opportunity” for recruitment in long-lived clonal plants: experimental studies of seedling establishment in Vaccinium shrubs. Can J Bot 74:1369–1374.  https://doi.org/10.1139/b96-166CrossRefGoogle Scholar
  63. Evans SM, Sinclair EA, Poore AG, Steinberg PD, Kendrick GA, Vergés A (2014) Genetic diversity in threatened Posidonia australis seagrass meadows. Conser Genetics 15:717–728CrossRefGoogle Scholar
  64. Ewanchuk PJ, Williams SL (1996) Survival and re-establishment of vegetative fragments of eelgrass (Zostera marina). Can J Bot 74:1584–1590CrossRefGoogle Scholar
  65. Fenchel T (1969) The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6:1–182CrossRefGoogle Scholar
  66. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University PressGoogle Scholar
  67. Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw Biol 47:483–494CrossRefGoogle Scholar
  68. Figuerola J, Green AJ, Santamaria L (2002) Comparative dispersal effectiveness of wigeongrass seeds by waterfowl wintering in south-west Spain: quantitative and qualitative aspects. J Ecol 90:989–1001CrossRefGoogle Scholar
  69. Fishman JR, Orth RJ (1996) Effects of predation on Zostera marina L. seed abundance. J Exp Mar Biol Ecol 198:11–26.  https://doi.org/10.1016/0022-0981(95)00176-XCrossRefGoogle Scholar
  70. Foley ME (2001) Seed dormancy: an update on terminology, physiological genetics, and quantitative trait loci regulating germinability. Weed Sci 49:305–317CrossRefGoogle Scholar
  71. Fonseca MS, Bell SS (1998) Influence of physical setting on seagrass landscapes near Beaufort, North Carolina. USA Mar Ecol Prog Ser 171:109CrossRefGoogle Scholar
  72. Fonseca MS, Kenworthy WJ, Griffith E, Hall MO, Finkbeiner M, Bell SS (2008) Factors influencing landscape pattern of the seagrass Halophila decipiens in an oceanic setting Estuarine. Coast Shelf Sci 76:163–174.  https://doi.org/10.1016/j.ecss.2007.06.014CrossRefGoogle Scholar
  73. Fraser MW, Kendrick GA, Statton J, Hovey RK, Zavala-Perez A, Walker DI (2014) Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J Ecol 102:1528–1536.  https://doi.org/10.1111/1365-2745.12300CrossRefGoogle Scholar
  74. Goubin C, Loques F (1991) Germinating Zostera noltii Hornemann found in the Etang de Diana,Corsica. Aquat Bot 42:75–79CrossRefGoogle Scholar
  75. Grace JB (1993) The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquat Bot 44:159–180.  https://doi.org/10.1016/0304-3770(93)90070-DCrossRefGoogle Scholar
  76. Granger SL, Traber MS, Nixon SW (2000) The influence of planting depth and density on germination and development of Zostera marina L. seeds. Biologia marina Mediterranea 7:55–58Google Scholar
  77. Grundy AC, Mead A, Burston S (2003) Modelling the emergence response of weed seeds to burial depth: interactions with seed density, weight and shape. J Appl Ecol 40:757–770.  https://doi.org/10.1046/j.1365-2664.2003.00836.xCrossRefGoogle Scholar
  78. Gutterman Y (1994) Strategies of seed dispersal and germination in plants inhabiting deserts. Bot Rev 60:373–425CrossRefGoogle Scholar
  79. Hall LM, Hanisak MD, Virnstein RW (2006) Fragments of the seagrasses Halodule wrightii and Halophila johnsonii as potential recruits in Indian River Lagoon. Fla Mar Ecol Prog Ser 310:109–117.  https://doi.org/10.3354/meps310109CrossRefGoogle Scholar
  80. Hammerstrom KK, Kenworthy WJ, Fonseca MS, Whitfield PE (2006) Seed bank, biomass, and productivity of Halophila decipiens, a deep water seagrass on the west Florida continental shelf. Aquat Bot 84:110–120.  https://doi.org/10.1016/j.aquabot.2005.08.002CrossRefGoogle Scholar
  81. Harper JL (1977) Population biology of plants. Population Biology of PlantsGoogle Scholar
  82. Harrison PG (1987) Natural expansion and experimental manipulation of seagrass (Zostera spp.) abundance and the response of infaunal invertebrates Estuarine. Coast Shelf Sci 24:799–812CrossRefGoogle Scholar
  83. Harrison PG (1993) Variations in demography of Zostera marina and Z. noltii on an intertidal gradient. Aquat Bot 45:63–77.  https://doi.org/10.1016/0304-3770(93)90053-YCrossRefGoogle Scholar
  84. Harwell MC, Orth RJ (2002) Long-distance dispersal potential in a marine macrophyte. Ecology 83:3319–3330CrossRefGoogle Scholar
  85. Hilhorst HWM, Karssen CM (1992) Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regul 11:225–238CrossRefGoogle Scholar
  86. Holbrook KM, Smith TB (2000) Seed dispersal and movement patterns in two species of Ceratogymna hornbills in a West African tropical lowland forest. Oecologia 125:249–257.  https://doi.org/10.1007/s004420000445CrossRefPubMedPubMedCentralGoogle Scholar
  87. Hosokawa S, Nakaoka M, Miyoshi E, Kuwae T (2015) Seed dispersal in the seagrass Zostera marina is mostly within the parent bed in a protected bay. Mar Ecol Prog Ser 523:41–56.  https://doi.org/10.3354/meps11146CrossRefGoogle Scholar
  88. Hovey RK et al (2015) Strategy for assessing impacts in ephemeral tropical seagrasses. Mar Pollut Bull 101(2):594–599Google Scholar
  89. Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci U S A 101:8998–9002.  https://doi.org/10.1073/pnas.0402642101CrossRefPubMedPubMedCentralGoogle Scholar
  90. Hughes AR, Stachowicz JJ (2011) Seagrass genotypic diversity increases disturbance response via complementarity and dominance. J Ecol 99:445–453.  https://doi.org/10.1111/j.1365-2745.2010.01767.xCrossRefGoogle Scholar
  91. Inglis GJ (2000a) Disturbance-related heterogeneity in the seed banks of a marine angiosperm. J Ecol 88:88–99.  https://doi.org/10.1046/j.1365-2745.2000.00433.xCrossRefGoogle Scholar
  92. Inglis GJ (2000b) Variation in the recruitment behaviour of seagrass seeds: implications for population dynamics and resource management. Pac Conserv Biol 5:251–259CrossRefGoogle Scholar
  93. Inglis GJ, Lincoln Smith MP (1998) Synchronous flowering of estuarine seagrass meadows. Aquat Bot 60:37–48.  https://doi.org/10.1016/S0304-3770(97)00068-5CrossRefGoogle Scholar
  94. Jacobs SWL, Les DH, Moody ML (2006) New combinations in Australasian Zostera (Zosteraceae). Telopea 11:127–128Google Scholar
  95. Jarvis JC, Moore KA (2010) The role of seedlings and seed bank viability in the recovery of Chesapeake Bay, USA, Zostera marina populations following a large-scale decline. Hydrobiologia 649:55–68CrossRefGoogle Scholar
  96. Jarvis JC, Moore KA (2015) Effects of seed source, sediment type, and burial depth on mixed-annual and perennial Zostera marina L. seed germination and seedling establishment. Estuaries Coasts 38:964–978CrossRefGoogle Scholar
  97. Jarvis JC, Moore KA, Kenworthy W (2012) Characterization and ecological implication of eelgrass life history strategies near the species’ southern limit in the western North Atlantic. Mar Ecol Prog Ser 444:43–56CrossRefGoogle Scholar
  98. Jarvis JC, Moore KA, Kenworthy WJ (2014) Persistence of Zostera marina L. (eelgrass) seeds in the sediment seed bank. J Exp Mar Biol Ecol 459:126–136CrossRefGoogle Scholar
  99. Jenkins G et al (2015) Seagrass resilience in Port Phillip Bay: final report to the seagrass and reefs program for Port Phillip Bay. University of MelbourneGoogle Scholar
  100. Jensen S, Bell S (2001) Seagrass growth and patch dynamics: cross-scale morphological plasticity. Plant Ecol 155:201–217.  https://doi.org/10.1023/a:1013286731345CrossRefGoogle Scholar
  101. Kahn AE, Durako MJ (2005) The effect of salinity and ammonium on seed germination in Ruppia maritima from Florida Bay. Bull Mar Sci 77:453–458Google Scholar
  102. Kalisz S, McPeek MA (1992) Demography of an age-structured annual: resampled projection matrices, elasticity analyses, and seed bank effects. Ecology 73:1082–1093.  https://doi.org/10.2307/1940182CrossRefGoogle Scholar
  103. Källström B, Nyqvist A, Åberg P, Bodin M, André C (2008) Seed rafting as a dispersal strategy for eelgrass (Zostera marina). Aquat Bot 88:148–153CrossRefGoogle Scholar
  104. Kendall MS, Battista T, Hillis-Starr Z (2004) Long term expansion of a deep Syringodium filiforme meadow in St. Croix, US Virgin Islands: the potential role of hurricanes in the dispersal of seeds. Aquat Bot 78:15–25.  https://doi.org/10.1016/j.aquabot.2003.09.004CrossRefGoogle Scholar
  105. Kendrick GA, Eckersley J, Walker DI (1999) Landscape-scale changes in seagrass distribution over time: a case study from Success Bank, Western Australia. Aquat Bot 65:293–309CrossRefGoogle Scholar
  106. Kendrick GA, Hegge BJ, Wyllie A, Davidson A, Lord DA (2000) Changes in seagrass cover on success and Parmelia Banks, Western Australia Between 1965 and 1995 Estuarine. Coast Shelf Sci 50:341–353CrossRefGoogle Scholar
  107. Kendrick GA, Aylward MJ, Hegge BJ, Cambridge ML, Hillman K, Wyllie A, Lord DA (2002) Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquat Bot 73:75–87.  https://doi.org/10.1016/s0304-3770(02)00005-0
  108. Kendrick GA, Duarte CM, Marbà N (2005) Clonality in seagrasses, emergent properties and seagrass landscapes. Mar Ecol Prog Ser 290:291–296CrossRefGoogle Scholar
  109. Kendrick GA et al (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62:56–65CrossRefGoogle Scholar
  110. Kendrick GA et al (2017) Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol Rev 92:921–938.  https://doi.org/10.1111/brv.12261CrossRefPubMedPubMedCentralGoogle Scholar
  111. Kinlan BP, Gaines SD, Lester SE (2005) Propagule dispersal and the scales of marine community process. Divers Distrib 11:139–148.  https://doi.org/10.1111/j.1366-9516.2005.00158.xCrossRefGoogle Scholar
  112. Kirkman H (1999) Pilot experiments on planting seedlings and small seagrass propagules in Western Australia. Mar Pollut Bull 37:460–467CrossRefGoogle Scholar
  113. Koch EW (2001) Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24:1–17CrossRefGoogle Scholar
  114. Kuo J (2005) A revision of the genus Heterozostera (Zosteraceae). Aquat Bot 81:97–140.  https://doi.org/10.1016/j.aquabot.2004.10.005CrossRefGoogle Scholar
  115. Kuo J, Den Hartog C (2001) Seagrass taxonomy and identification key. In: Short FT, Coles RG (eds) Global seagrass research methods, vol 33, pp 31–58Google Scholar
  116. Kuo J, Den Hartog C (2006) Seagrass morphology, anatomy, and ultrastructure. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, pp 51–87Google Scholar
  117. Kuo J, Kirkman H (1990) Anatomy of vivaparous seagrasses seedlings of Amphibolis and Thalassodendron and their nutrient supply. Bot Mar 33:117–126.  https://doi.org/10.1515/botm.1990.33.1.117CrossRefGoogle Scholar
  118. Kuo J, Kirkman H (1992) Fruits, seeds and germination in the seagrass Halophila ovalis (Hydrocharitaceae). Botanica marina 35:197–204Google Scholar
  119. Kuo J, Kirkman H (1996) Seedling development of selected Posidonia species from southwest Australia. In: Seagrass biology: proceedings of an international workshop Rottnest Island, Western Australia, pp 25–29Google Scholar
  120. Kuo J, Cook IH, Kirkman H (1987) Observations of propagating shoots in the seagrass genus Amphibolis C. Agardh (Cymodoceaceae). Aquat Bot 27:291–293.  https://doi.org/10.1016/0304-3770(87)90048-9CrossRefGoogle Scholar
  121. Kuo J, Iizumi H, Nilsen BE, Aioi K (1990) Fruit anatomy, seed germination and seedling development in the Japanese seagrass Phyllospadix (Zosteraceae). Aquat Bot 37:229–245CrossRefGoogle Scholar
  122. Kuo J, Coles RG, Lee Long WJ, Mellors JE (1991) Fruits and seeds of Thalassia hemprichii (Hydrocharitaceae) from Queensland, Australia. Aquat Bot 40:165–173.  https://doi.org/10.1016/0304-3770(91)90094-LCrossRefGoogle Scholar
  123. Kuo J, Long WJL, Coles RG (1993) Occurrence and fruit and seed biology of Halophila tricostata Greenway (Hydrocharitaceae). Mar Freshw Res 44:43–57Google Scholar
  124. Lacap CDA, Vermaat JE, Rollon RN, Nacorda HM (2002) Propagule dispersal of the SE Asian seagrasses Enhalus acoroides and Thalassia hemprichii. Mar Ecol Prog Ser 235:75–80CrossRefGoogle Scholar
  125. Larkum AWD, Orth RJ, Duarte CM (2006) Seagrasses: biology, ecology and conservation. SpringerGoogle Scholar
  126. Lee K-S, Park J-I, Kim YK, Park SR, Kim J-H (2007) Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role of new shoot recruitment from seed banks. Mar Ecol Prog Ser 342:105–115CrossRefGoogle Scholar
  127. Les DH (1988) Breeding systems, population structure, and evolution in hydrophilous angiosperms. Ann Missouri Bot Gard 75:819–835.  https://doi.org/10.2307/2399370CrossRefGoogle Scholar
  128. Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463.  https://doi.org/10.2307/2419820CrossRefGoogle Scholar
  129. Les DH, Moody ML, Jacobs SWL, Bayer RJ (2002) Systematics of seagrasses (zosteraceae) in Australia and New Zealand. Syst Bot 27:468–484.  https://doi.org/10.1043/0363-6445-27.3.468CrossRefGoogle Scholar
  130. Li W (2014) Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants. Aquat Bot 118:62–70.  https://doi.org/10.1016/j.aquabot.2014.07.008CrossRefGoogle Scholar
  131. Long WL, Mellors J, Coles R (1993) Seagrasses between Cape York and Hervey Bay, Queensland, Australia. Mar Freshw Res 44:19–31Google Scholar
  132. Loques F, Caye G, Meinesz A (1990) Germination in the marine phanerogam Zostera noltii Hornemann at Golfe Juan, French Mediterranean. Aquat Bot 38:249–260CrossRefGoogle Scholar
  133. Macreadie PI, York PH, Sherman CDH (2014) Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery. Ecol Evol 4:450–461.  https://doi.org/10.1002/ece3.933CrossRefPubMedPubMedCentralGoogle Scholar
  134. Malm T (2006) Reproduction and recruitment of the seagrass Halophila stipulacea. Aquat Bot 85:345–349CrossRefGoogle Scholar
  135. Manley SR, Orth RJ, Ruiz-Montoya L (2015) Roles of dispersal and predation in determining seedling recruitment patterns in a foundational marine angiosperm. Mar Ecol Prog Ser 533:109–120.  https://doi.org/10.3354/meps11363CrossRefGoogle Scholar
  136. Marbà N, Duarte CM (1994) Growth response of the seagrass Cymodocea nodosa to experimental burial and erosion. Mar Ecol Prog Ser 107:307–311CrossRefGoogle Scholar
  137. Marbà N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol Prog Ser, 174Google Scholar
  138. Marbà N, Walker DI (1999) Growth, flowering, and population dynamics of temperate Western Australian seagrasses. Mar Ecol Prog Ser 184:105–118.  https://doi.org/10.3354/meps184105CrossRefGoogle Scholar
  139. Marbà N et al (2013) Diversity of European seagrass indicators: patterns within and across regions. Hydrobiologia 704:265–278CrossRefGoogle Scholar
  140. Marion SR, Orth RJ (2012) Seedling establishment in eelgrass: seed burial effects on winter losses of developing seedlings. Mar Ecol Prog Ser 448:197–207CrossRefGoogle Scholar
  141. Massa SI, Paulino CM, Serrao EA, Duarte CM, Arnaud-Haond S (2013) Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion. Bmc Ecol 13:39.  https://doi.org/10.1186/1472-6785-1113-1139,  https://doi.org/10.1186/1472-6785-13-39
  142. McConchie CA, Knox RB (1989) Pollen-stigma interactions in the seagrass Posidonia australis. Ann Bot 63:235–248CrossRefGoogle Scholar
  143. McKenna S, Jarvis J, Sankey T, Reason C, Coles R, Rasheed M (2015) Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event. J Biosci 40:389–398PubMedCrossRefGoogle Scholar
  144. McMahon K et al (2014) The movement ecology of seagrasses. Proc Roy Soc B: Biol Sci 281:9.  https://doi.org/10.1098/rspb.2014.0878CrossRefGoogle Scholar
  145. McMillan C (1976) Experimental studies on flowering and reproduction in seagrasses. Aquat Bot 2:87–92CrossRefGoogle Scholar
  146. McMillan C (1980) Flowering under controlled conditions by Cymodocea serrulata, Halophila stipulacea, Syringodium isoetifolium, Zostera capensis and Thalassia hemprichii from Kenya. Aquat Bot 8:323–336.  https://doi.org/10.1016/0304-3770(80)90062-5CrossRefGoogle Scholar
  147. McMillan C (1983a) Seed germination for an annual form of Zostera marina from the sea of cortez, Mexico. Aquat Bot 16:105–110CrossRefGoogle Scholar
  148. McMillan C (1983b) Seed germination in Halodule wrightii and Syringodium filiforme from Texas and the US Virgin Islands. Aquat Bot 15:217–220CrossRefGoogle Scholar
  149. McMillan C (1988a) Seed germination and seedling development of Halophila decipiens Ostenfeld (Hydrocharitaceae) from Panama. Aquat Bot 31:169–176CrossRefGoogle Scholar
  150. McMillan C (1988b) The seed reserve of Halophila engelmannii (Hydrocharitaceae) in Redfish bay, Texas. Aquat Bot 30:253–259CrossRefGoogle Scholar
  151. McMillan C (1991) The longevity of seagrass seeds. Aquat Bot 40:195–198CrossRefGoogle Scholar
  152. McMillan C, Bridges KW, Kock RL, Falanruw M (1982) Fruit and seedlings of Cymodocea rotundata in Yap, Micronesia. Aquat Bot 14:99–105CrossRefGoogle Scholar
  153. McMillan C, Soong K (1989) An annual cycle of flowering, fruiting and seed reserve for Halophila decipiens Ostenfeld (Hydrocharitaceae) in Panama. Aquat Bot 34:375–379CrossRefGoogle Scholar
  154. Meehan AJ, West RJ (2000) Recovery times for a damaged Posidonia australis bed in south eastern Australia. Aquat Bot 67:161–167.  https://doi.org/10.1016/S0304-3770(99)00097-2CrossRefGoogle Scholar
  155. Meehan AJ, West RJ (2004) Seedling development and patch formation of the seagrass Posidonia australis in a southeast Australian estuary. Aquat Bot 79:1–14.  https://doi.org/10.1016/j.aquabot.2003.11.009CrossRefGoogle Scholar
  156. Moore KA, Orth RJ, Nowak JF (1993) Environmental regulation of seed germination in Zostera marina L. (eelgrass) in Chesapeake Bay: effects of light, oxygen and sediment burial. Aquat Bot 45:79–91CrossRefGoogle Scholar
  157. Morita T, Okumura H, Abe M, Kurashima A, Maegawa M (2007) Density and distribution of seeds in bottom sediments in Zostera marina beds in Ago Bay, central Japan. Aquat Bot 87:38–42.  https://doi.org/10.1016/j.aquabot.2007.03.001CrossRefGoogle Scholar
  158. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci 105:19052–19059.  https://doi.org/10.1073/pnas.0800375105CrossRefPubMedPubMedCentralGoogle Scholar
  159. Nonogaki H, Bassel GW, Bewley JD (2010) Germination—still a mystery. Plant Sci 179:574–581CrossRefGoogle Scholar
  160. O’Brien C (1994) Ontogenetic changes in the diet of juvenile brown tiger prawns Penaeus esculentus. Mar Ecol Prog Ser (Oldendorf) 112:195–200CrossRefGoogle Scholar
  161. Oetjen K, Reusch TBH (2007) Genome scans detect consistent divergent selection among subtidal vs. intertidal populations of the marine angiosperm Zostera marina. Mol Ecol 16:5156–5157.  https://doi.org/10.1111/j.1365-294X.2007.03577.xCrossRefPubMedPubMedCentralGoogle Scholar
  162. Oetjen K, Ferber S, Dankert I, Reusch TBH (2010) New evidence for habitat-specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers. Mar Biol 157:81–89.  https://doi.org/10.1007/s00227-009-1297-8CrossRefGoogle Scholar
  163. Olesen B, Marba N, Duarte CM, Savela RS, Fortes MD (2004) Recolonization dynamics in a mixed seagrass meadow: the role of clonal versus sexual processes. Estuaries 27:770–780CrossRefGoogle Scholar
  164. Orth RJ (1999) Settling rates of Posidonia coriacea seeds and Posidonia spp. seedling abundance off Rottnest Island, Perth, Western Australia. In: Walker DI, Wells FE (eds) The seagrass flora and fauna off Rottnest Island, Western Australia. Western Australia Museum, Perth, pp. 51–61Google Scholar
  165. Orth RJ, Moore KA (1983) Seed germination and seedling growth of Zostera marina L. (eelgrass) in the Chesapeake Bay. Aquat Bot 15:117–131CrossRefGoogle Scholar
  166. Orth RJ, Luckenbach M, Moore KA (1994) Seed dispersal in a marine macrophyte—implications for colonization and restoration. Ecology 75:1927–1939CrossRefGoogle Scholar
  167. Orth RJ et al (2000) A review of issues in seagrass seed dormancy and germination: implications for conservation and restoration. Mar Ecol Prog Ser 200:277–288CrossRefGoogle Scholar
  168. Orth RJ, Heck KL, Tunbridge DJ (2002) Predation on seeds of the seagrass Posidonia australis in Western Australia. Mar Ecol Prog Ser 244:81–88CrossRefGoogle Scholar
  169. Orth RJ, Fishman JR, Harwell MC, Marion SR (2003) Seed-density effects on germination and initial seedling establishment in eelgrass Zostera marina in the Chesapeake Bay region. Mar Ecol Prog Ser 250:71–79CrossRefGoogle Scholar
  170. Orth RJ, Harwell MC, Inglis GJ (2006) Ecology of seagrass seeds and seagrass dispersal processes. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, The Netherlands, pp 111–133Google Scholar
  171. Orth RJ, Kendrick GA, Marion SR (2007) Posidonia australis seed predation in seagrass habitats of Two Peoples Bay, Western Australia. Aquat Bot 86:83–85.  https://doi.org/10.1016/j.aquabot.2006.09.012CrossRefGoogle Scholar
  172. Orth RJ, Moore KA, Marion SR, Wilcox DJ, Parrish DB (2012) Seed addition facilitates eelgrass recovery in a coastal bay system. Mar Ecol Prog Ser 448:177–195.  https://doi.org/10.3354/meps09522CrossRefGoogle Scholar
  173. Pan J, Price J (2001) Fitness and evolution in clonal plants: the impact of clonal growth. Evol Ecol 15:583–600.  https://doi.org/10.1023/A:1016065705539CrossRefGoogle Scholar
  174. Parthasarathy N, Ravikumar K, Ramamurthy K (1988) Floral biology and ecology of Halophila beccarii Aschers. (Hydrocharitaceae). Aquat Bot 31:141–151.  https://doi.org/10.1016/0304-3770(88)90044-7CrossRefGoogle Scholar
  175. Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Ann Rev 16:229–311Google Scholar
  176. Perez M, Duarte CM, Romero J, Sand-Jensen K, Alcoverro T (1994) Growth plasticity in Cymodocea nodosa stands: the importance of nutrient supply. Aquat Bot 47:249–264.  https://doi.org/10.1016/0304-3770(94)90056-6CrossRefGoogle Scholar
  177. Peterken CJ, Conacher CA (1997) Seed germination and recolonisation of Zostera capricorni after grazing by dugongs. Aquat Bot 59:333–340.  https://doi.org/10.1016/S0304-3770(97)00061-2CrossRefGoogle Scholar
  178. Philbrick CT, Les DH (1996) Evolution of aquatic angiosperm reproductive systems. BioScience 46:813–826CrossRefGoogle Scholar
  179. Piazzi L (1999) In situ survival and development of Posidonia oceanica (L.) Delile seedlings. Aquat Bot 63:103–112CrossRefGoogle Scholar
  180. Probert RJ, Brenchley JL (1999) The effect of environmental factors on field and laboratory germination in a population of Zostera marina L. from southern England seed. Sci Res 9:331–339Google Scholar
  181. Ramage D, Schiel D (1998) Reproduction in the seagrass Zostera novazelandica on intertidal platforms in southern New Zealand. Mar Biol 130:479–489CrossRefGoogle Scholar
  182. Rasheed MA (2004) Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. J Exp Mar Biol Ecol 310:13–45CrossRefGoogle Scholar
  183. Rasheed MA, McKenna SA, Carter AB, Coles RG (2014) Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar Pollut Bull 83:491–499.  https://doi.org/10.1016/j.marpolbul.2014.02.013CrossRefPubMedGoogle Scholar
  184. Reed DC, Holbrook SJ, Solomon E, Anghera M (1998) Studies on germination and root development in the surfgrass Phyllospadix torreyi: implications for habitat restoration. Aquat Bot 62:71–80CrossRefGoogle Scholar
  185. Reed DC, Holbrook SJ, Blanchette CA, Worcester S (2009) Patterns and sources of variation in flowering, seed supply and seedling recruitment in surfgrass Phyllospadix torreyi. Mar Ecol Prog Ser 384:97–106.  https://doi.org/10.3354/meps08033CrossRefGoogle Scholar
  186. Reusch TBH (2003) Floral neighbourhoods in the sea: how floral density, opportunity for outcrossing and population fragmentation affect seed set in Zostera marina. J Ecol 91:610–615.  https://doi.org/10.1046/j.1365-2745.2003.00787.xCrossRefGoogle Scholar
  187. Reusch TBH, Bostrom C (2011) Widespread genetic mosaicism in the marine angiosperm Zostera marina is correlated with clonal reproduction. Evol Ecol 25:899–913.  https://doi.org/10.1007/s10682-010-9436-8CrossRefGoogle Scholar
  188. Reusch TBH, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Natl Acad Sci USA 102:2826–2831.  https://doi.org/10.1073/pnas.0500008102CrossRefPubMedPubMedCentralGoogle Scholar
  189. Revsbech NP, Sorensen J, Blackburn TH, Lomholt JP (1980) Distribution of oxygen in marine sediments measured with microelectrodes1. Limnol Oceanogr 25:403–411CrossRefGoogle Scholar
  190. Reynolds LK, McGlathery KJ, Waycott M (2012) Genetic diversity enhances restoration success by augmenting ecosystem services. PloS One 7:e38397.  https://doi.org/10.1371/journal.pone.0038397
  191. Reynolds LK, Waycott M, McGlathery KJ (2013) Restoration recovers population structure and landscape genetic connectivity in a dispersal-limited ecosystem. J Ecol 101:1288–1297.  https://doi.org/10.1111/1365-2745.12116CrossRefGoogle Scholar
  192. Rivers DO, Kendrick GA, Walker DI (2011) Microsites play an important role for seedling survival in the seagrass Amphibolis antarctica. J Exp Mar Biol Ecol 401:29–35.  https://doi.org/10.1016/j.jembe.2011.03.005CrossRefGoogle Scholar
  193. Rollon RN, Cayabyab NM, Fortes MD (2001) Vegetative dynamics and sexual reproduction of monospecific Thalassia hemprichii meadows in the Kalayaan Island Group. Aquat Bot 71:239–246CrossRefGoogle Scholar
  194. Rollon RN, van Steveninck EDD, van Vierssen W (2003) Spatio-temporal variation in sexual reproduction of the tropical seagrass Enhalus acoroides (L.f.) Royle in Cape Bolinao, NW Philippines. Aquat Bot 76:339–354.  https://doi.org/10.1016/s0304-3770(03)00070-6CrossRefGoogle Scholar
  195. Ruiz-Montoya L, Lowe RJ, Van Niel KP, Kendrick GA (2012) The role of hydrodynamics on seed dispersal in seagrasses. Limnol Oceanogr 57:1257–1265.  https://doi.org/10.4319/lo.2012.57.5.1257CrossRefGoogle Scholar
  196. Ruiz-Montoya L, Lowe R, Kendrick G (2015) Contemporary connectivity is sustained by wind- and current-driven seed dispersal among seagrass meadows movement. Ecology 3:1–14.  https://doi.org/10.1186/s40462-015-0034-9CrossRefGoogle Scholar
  197. Salita JT, Ekau W, Saint-Paul U (2003) Field evidence on the influence of seagrass landscapes on fish abundance in Bolinao, northern Philippines. Mar Ecol Prog Ser 247:183–195.  https://doi.org/10.3354/meps247183CrossRefGoogle Scholar
  198. Santelices B, Bolton JJ, Meneses I (2009) Marine algal communities. In: Roy K, Witman JD (eds) Marine macroecology. University of Chicago Press, Chicago, pp 153–193Google Scholar
  199. Sculthorpe C (1967) The biology of aquatic vascular plants. Edward Arnold, LondonGoogle Scholar
  200. Sherman CDH, Stanley AM, Keough MJ, Gardner MG, Macreadie PI (2012) Development of twenty-three novel microsatellite markers for the seagrass, Zostera muelleri from Australia. Conserv Genet Resour 4:689–693.  https://doi.org/10.1007/s12686-012-9623-8CrossRefGoogle Scholar
  201. Sherman CDH, York PH, Smith TM, Macreadie PI (2016) Fine-scale patterns of genetic variation in a widespread clonal seagrass species. Mar Biol 163:1–11.  https://doi.org/10.1007/s00227-016-2861-7CrossRefGoogle Scholar
  202. Short FT (1987) Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquat Bot 27:41–57CrossRefGoogle Scholar
  203. Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20CrossRefGoogle Scholar
  204. Short FT et al (2011) Extinction risk assessment of the world’s seagrass species. Biol Cons 144:1961–1971.  https://doi.org/10.1016/j.biocon.2011.04.010CrossRefGoogle Scholar
  205. Silvertown J (2008) The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Int J Plant Sci 169:157–168.  https://doi.org/10.1086/523357CrossRefGoogle Scholar
  206. Sinclair E, Krauss S, Anthony J, Hovey R, Kendrick G (2014a) The interaction of environment and genetic diversity within meadows of the seagrass Posidonia australis (Posidoniaceae). Mar Ecol Prog Ser 506:87–98.  https://doi.org/10.3354/meps10812CrossRefGoogle Scholar
  207. Sinclair EA, Gecan I, Krauss SL, Kendrick GA (2014b) Against the odds: complete outcrossing in a monoecious clonal seagrass Posidonia australis (Posidoniaceae). Ann Bot 113:1185–1196.  https://doi.org/10.1093/aob/mcu048CrossRefPubMedPubMedCentralGoogle Scholar
  208. Sinclair EA, Anthony JM, Greer D, Ruiz-Montoya L, Evans SM, Krauss SL, Kendrick GA (2016a) Genetic signatures of Bassian glacial refugia and contemporary connectivity in a marine foundation species. J Biogeogr 43(11):2209–2222Google Scholar
  209. Sinclair EA, Statton J, Hovey R, Anthony JM, Dixon KW, Kendrick GA (2016b) Reproduction at the extremes: pseudovivipary, hybridization and genetic mosaicism in Posidonia australis (Posidoniaceae). Ann Bot 117:237–247.  https://doi.org/10.1093/aob/mcv162CrossRefPubMedPubMedCentralGoogle Scholar
  210. Sintes T, Marbà N, Duarte CM, Kendrick GA (2005) Nonlinear processes in seagrass colonisation explained by simple clonal growth rules. Oikos 108:165–175.  https://doi.org/10.1111/j.0030-1299.2005.13331.xCrossRefGoogle Scholar
  211. Smith NM, Walker DI (2002) Canopy structure and pollination biology of the seagrasses Posidonia australis and P. sinuosa (Posidoneaceae). Aquat Bot 74:57–70.  https://doi.org/10.1016/s0304-3770(02)00047-5CrossRefGoogle Scholar
  212. Smith TM, York PH, Stanley AM, Macreadie PI, Keough MJ, Ross DJ, Sherman CDH (2013) Microsatellite primer development for the seagrass Zostera nigricaulis (Zosteraceae). Conserv Genet Resour 5:607–610.  https://doi.org/10.1007/s12686-013-9862-3CrossRefGoogle Scholar
  213. Smith TM, York PH, Macreadie PI, Keough MJ, Ross DJ, Sherman CDH (2016a) Recovery pathways from small-scale disturbance in a temperate Australian seagrass. Mar Ecol Prog Ser 542:97–108CrossRefGoogle Scholar
  214. Smith TM, York PH, Macreadie PI, Keough MJ, Ross DJ, Sherman CDH (2016b) Spatial variation in reproductive effort of a southern Australian seagrass. Mar Environ Res 120:214–224.  https://doi.org/10.1016/j.marenvres.2016.08.010CrossRefPubMedPubMedCentralGoogle Scholar
  215. Soong K, Chiu S-T, Chen C-NN (2013) Novel seed adaptations of a monocotyledon seagrass in the Wavy Sea. PloS one 8Google Scholar
  216. Stafford-Bell RE, Chariton AA, Robinson RW (2015) Prolonged buoyancy and viability of Zostera muelleri Irmisch ex Asch. vegetative fragments indicate a strong dispersal potential. J Exp Mar Biol Ecol 464:52–57.  https://doi.org/10.1016/j.jembe.2014.12.014CrossRefGoogle Scholar
  217. Strydom S, McMahon K, Kendrick GA, Statton J, Lavery PS (2017) Seagrass Halophila ovalis is affected by light quality across different life history stages. Mar Ecol Prog Ser 572:103–116CrossRefGoogle Scholar
  218. Stubler AD, Jackson LJ, Furman BT, Peterson BJ (2017) Seed production patterns in Zostera marina: effects of patch size and landscape configuration. Estuaries Coasts 40:564–572.  https://doi.org/10.1007/s12237-016-0165-2CrossRefGoogle Scholar
  219. Sugiura H, Hiroe Y, Suzuki T, Maegawa M (2009) The carbohydrate catabolism of Zostera marina influenced by lower salinity during the pre-germination stage. Fish Sci 75:1205–1217CrossRefGoogle Scholar
  220. Sumoski SE, Orth RJ (2012) Biotic dispersal in eelgrass Zostera marina. Mar Ecol Prog Ser 471:1–10.  https://doi.org/10.3354/meps10145CrossRefGoogle Scholar
  221. Tanaka N, Uehara K, Murata A (2004) Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae. J Plant Res 117:265–276.  https://doi.org/10.1007/s10265-004-0155-5CrossRefPubMedPubMedCentralGoogle Scholar
  222. Tanner CE, Parham T (2010) Growing Zostera marina (eelgrass) from seeds in land-based culture systems for use in restoration projects. Restor Ecol 18:527–537CrossRefGoogle Scholar
  223. Thompson K, Grime JP (1979) Seasonal variation in the seed banks of Herbaceous species in ten contrasting habitats. J Ecol 67:893–921.  https://doi.org/10.2307/2259220CrossRefGoogle Scholar
  224. Thompson SE, Assouline S, Chen L, Trahktenbrot A, Svoray T, Katul GG (2014) Secondary dispersal driven by overland flow in drylands: review and mechanistic model development movement. Ecology 2:7.  https://doi.org/10.1186/2051-3933-2-7CrossRefGoogle Scholar
  225. Thomson ACG et al (2015) Seagrass viviparous propagules as a potential long-distance dispersal mechanism. Estuaries Coasts 38:927–940.  https://doi.org/10.1007/s12237-014-9850-1CrossRefGoogle Scholar
  226. Thomson ACG et al (2016) Response to “comment on ‘seagrass viviparous propagules as a potential long-distance dispersal mechanism’ by A. C. G. Thomson et al”. Estuaries Coasts 39:875–876.  https://doi.org/10.1007/s12237-015-0040-6
  227. Tol SJ, Jarvis JC, York PH, Grech A, Congdon BC, Coles RG (2017) Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Sci Rep 7:4458.  https://doi.org/10.1038/s41598-017-04421-1CrossRefPubMedPubMedCentralGoogle Scholar
  228. Tulipani DC, Lipcius RN (2014) Evidence of Eelgrass (Zostera marina) seed dispersal by Northern Diamondback Terrapin (Malaclemys terrapin terrapin) in Lower Chesapeake Bay. PLoS ONE 9:e103346.  https://doi.org/10.1371/journal.pone.0103346CrossRefPubMedPubMedCentralGoogle Scholar
  229. Turner SJ (2007) Growth and productivity of intertidal Zostera capricorni in New Zealand estuaries. NZ J Mar Freshwat Res 41:77–90.  https://doi.org/10.1080/00288330709509897CrossRefGoogle Scholar
  230. Ungar IA (1995) Seed germination and seed-bank ecology in halophytes. Seed Dev Germination, 599–628Google Scholar
  231. Valdemarsen T, Wendelboe K, Egelund JT, Kristensen E, Flindt MR (2011) Burial of seeds and seedlings by the lugworm Arenicola marina hampers eelgrass (Zostera marina) recovery. J Exp Mar Biol Ecol 410:45–52CrossRefGoogle Scholar
  232. Van Katwijk MM, Wijgergangs LJM (2004) Effects of locally varying exposure, sediment type and low-tide water cover on Zostera marina recruitment from seed. Aquat Bot 80:1–12CrossRefGoogle Scholar
  233. van Katwijk MM et al (2015) Global analysis of seagrass restoration: the importance of large‐scale planting. J Appl Ecol 53(2):567–578Google Scholar
  234. van Lent F, Verschuure JM (1994) Intraspecific variability of Zostera marina L. (eelgrass) in the estuaries and lagoons of the southwestern Netherlands. I. Population dynamics. Aquat Bot 48:31–58CrossRefGoogle Scholar
  235. van Tussenbroek BI, Villamil N, Márquez-Guzmán J, Wong R, Monroy-Velázquez LV, Solis-Weiss V (2016) Experimental evidence of pollination in marine flowers by invertebrate fauna. 7:12980  https://doi.org/10.1038/ncomms12980, https://www.nature.com/articles/ncomms12980-supplementary-information
  236. Vermaat JE et al (2004) Meadow fragmentation and reproductive output of the SE Asian seagrass Enhalus acoroides. J Sea Res 52:321–328.  https://doi.org/10.1016/j.seares.2004.04.002CrossRefGoogle Scholar
  237. Vidondo B, Duarte C, Middelboe AL, Stefansen K, Lützen T, Nielsen SL (1997) Dynamics of a landscape mosaic: size and age distributions, growth and demography of seagrass Cymodocea nodosa patches. Mar Ecol Prog Ser 158:131–138CrossRefGoogle Scholar
  238. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256PubMedCrossRefPubMedCentralGoogle Scholar
  239. Wang M, Wang Y, Guo X, Sha J, Zhang H, Tang X, Zhou B (2016) Reproductive properties of Zostera marina and effects of sediment type and burial depth on seed germination and seedling establishment. Aquat Bot 134:68–74.  https://doi.org/10.1016/j.aquabot.2016.07.003CrossRefGoogle Scholar
  240. Wang M, Tang X, Zhang H, Zhou B (2017) Nutrient enrichment outweighs effects of light quality in Zostera marina (eelgrass) seed germination. J Exp Mar Biol Ecol 490:23–28.  https://doi.org/10.1016/j.jembe.2017.01.011CrossRefGoogle Scholar
  241. Wassenberg TJ (1990) Seasonal feeding on Zostera capricorni seeds by Juvenile Penaeus esculentus (Crustacea: Decapoda) in Moreton Bay, Queensland. Mar Freshw Res 41:301–310CrossRefGoogle Scholar
  242. Wassenberg T, Hill B (1987) Natural diet of the tiger prawns Penaeus esculentus and P. semisulcatus. Mar Freshw Res 38:169–182CrossRefGoogle Scholar
  243. Waycott M, McMahon K, Mellors J, Calladine A, Kleine D (2004) A guide to tropical seagrasses of the Indo-West Pacific. James Cook University, TownsvilleGoogle Scholar
  244. Waycott M et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381.  https://doi.org/10.1073/pnas.0905620106CrossRefPubMedPubMedCentralGoogle Scholar
  245. Waycott M, McMahon K, Lavery PS (2014) A guide to Southern temperate seagrasses. CSIRO Publishing, Collingwood, VIC, AustraliaGoogle Scholar
  246. Weatherall EJ, Jackson EL, Hendry RA, Campbell ML (2015) Quantifying the dispersal potential of seagrass vegetative fragments: a comparison of multiple subtropical species Estuarine. Coast Shelf Sci.  https://doi.org/10.1016/j.ecss.2015.11.026CrossRefGoogle Scholar
  247. Whitfield PE, Kenworthy WJ, Durako MJ, Hammerstrom KK, Merello MF (2004) Recruitment of Thalassia testudinum seedlings into physically disturbed seagrass beds. Mar Ecol Prog Ser 267:121–131.  https://doi.org/10.3354/meps267121CrossRefGoogle Scholar
  248. Wisehart LM, Dumbauld BR, Ruesink JL, Hacker SD (2007) Importance of eelgrass early life history stages in response to oyster aquaculture disturbance. Mar Ecol Prog Ser 344:71–80CrossRefGoogle Scholar
  249. Woodin SA, Marinelli RL, Lindsay SM (1998) Process-specific cues for recruitment in sedimentary environments: geochemical signals? J Mar Res 56:535–558CrossRefGoogle Scholar
  250. Wyllie-Echeverria S, Cox PA, Churchill AC, Brotherson JD, Wyllie-Echeverria T (2003) Seed size variation within Zostera marina L. (Zosteraceae). Bot J Linn Soc 142:281–288.  https://doi.org/10.1046/j.1095-8339.2003.00180.xCrossRefGoogle Scholar
  251. Xu S, Zhou Y, Wang P, Wang F, Zhang X, Gu R (2016) Salinity and temperature significantly influence seed germination, seedling establishment, and seedling growth of eelgrass Zostera marina L. PeerJ 4:e2697.  https://doi.org/10.7717/peerj.2697
  252. York PH, Carter AB, Chartrand K, Sankey T, Wells L, Rasheed MA (2015) Dynamics of a deep-water seagrass population on the Great Barrier reef: annual occurrence and response to a major dredging program. Sci Rep 5:13167.  https://doi.org/10.1038/srep13167, http://www.nature.com/articles/srep13167-supplementary-information
  253. York PH et al (2017) Identifying knowledge gaps in seagrass research and management: an Australian perspective. Mar Environ Res 127:163–172.  https://doi.org/10.1016/j.marenvres.2016.06.006CrossRefPubMedGoogle Scholar
  254. Zakaria MH, Sidik BJ, Hishamuddin O (1999) Flowering, fruiting and seedling of Halophila beccarii Aschers. (Hydrocharitaceae) from Malaysia. Aquat Bot 65:199–207.  https://doi.org/10.1016/S0304-3770(99)00040-6CrossRefGoogle Scholar
  255. Zipperle AM, Coyer JA, Reise K, Stam WT, Olsen JL (2009) Evidence for persistent seed banks in dwarf eelgrass Zostera noltii in the German Wadden Sea. Mar Ecol Prog Ser 380:73–80.  https://doi.org/10.3354/meps07929CrossRefGoogle Scholar
  256. Zipperle AM, Coyer JA, Reise K, Stam WT, Olsen JL (2010) An evaluation of small-scale genetic diversity and the mating system in Zostera noltii on an intertidal sandflat in the Wadden Sea. Ann Bot, 214Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Craig D. H. Sherman
    • 1
  • Timothy M. Smith
    • 1
    • 2
  • Paul H. York
    • 3
  • Jessie C. Jarvis
    • 4
  • Leonardo Ruiz-Montoya
    • 5
  • Gary A. Kendrick
    • 6
  1. 1.School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityGeelongAustralia
  2. 2.School of Environmental and Life SciencesUniversity of NewcastleOurimbahAustralia
  3. 3.Centre for Tropical Water and Aquatic Ecosystem ResearchJames Cook UniversityCairnsAustralia
  4. 4.Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonUSA
  5. 5.The UWA Oceans Institute and School of Biological SciencesThe University of Western AustraliaCrawleyAustralia
  6. 6.School of Biological Sciences and the Oceans InstituteThe University of Western AustraliaCrawleyAustralia

Personalised recommendations