Genetic Connectivity in Tropical and Temperate Australian Seagrass Species

  • Kathryn McMahonEmail author
  • Elizabeth A. Sinclair
  • Craig D. H. Sherman
  • Kor-Jent van Dijk
  • Udhi E. Hernawan
  • Jennifer Verduin
  • Michelle Waycott


Connectivity among populations influences resilience, genetic diversity , adaptation and speciation, so understanding this process is fundamental for conservation and management. This chapter summarises the main mechanisms of gene flow within and among seagrass meadows, and what we know about the spatial patterns of gene flow around Australia’s coastline. Today a significant body of research on the demographic and genetic connectivity of Australian seagrass meadows has developed. Most studies have focused on the genera Posidonia, Zostera, Heterozostera and Thalassia, in tropical and temperate systems across a range of habitats. These studies have shown overwhelmingly, that sexual reproduction is important for meadow persistence, as in most cases Australian seagrass meadows are genotypically diverse, with moderate to high levels of genotypic diversity. This high diversity could be generated through demographic connectivity, recruitment of individuals sourced from within a meadow, or from dispersal between meadows. Attempts to understand the relative significance of these processes are limited, highlighting a major gap in our understanding. Genetic structure is apparent across a range of spatial scales, from m’s to 100’s to 1000’s km. At local and regional scales, particularly in confined systems such as estuaries and bays, it is not necessarily the dominant oceanographic currents influencing patterns of genetic connectivity, but local eddies, winds and tides. Over larger spatial scales, isolation by distance is consistently significant, with unique genetic clusters spreading over 100s of kilometres. This indicates that regional structure occurs at the limits of long distance dispersal for the species and this is particularly evident where meadows are highly fragmented. The number of genetic studies on Australian seagrasses has increased dramatically recently; however, there are still many opportunities to improve our understanding through focusing on species with different dispersal potentials, more detailed sampling across a range of spatial and temporal scales and combining ecological and modelling approaches.


  1. Ackerman JD (1995) Convergence of filiform pollen morphologies in seagrasses—functional mechanisms. Evol Ecol 9:139–153CrossRefGoogle Scholar
  2. Ackerman JD (1997a) Submarine pollination in the marine angiosperm Zostera marina (Zosteraceae). 1. The influence of floral morphology on fluid flow. Am J Bot 84:1099–1109PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ackerman JD (1997b) Submarine pollination in the marine angiosperm Zostera marina (Zosteraceae). 2. Pollen transport in flow fields and capture by stigmas. Am J Bot 84:1110–1119PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ackerman JD (2006) Sexual reproduction of seagrasses: pollination in the marine context. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, DordrechtGoogle Scholar
  5. Ailstock SM, Shafer DJ, Magoun DA (2010) Protocols for use of Potamogeton perfoliatus and Ruppia maritima seeds in large-scale restoration. Restor Ecol 18:560–573CrossRefGoogle Scholar
  6. Alberto F, Massa S, Manent P, Diaz-Almela E, Arnaud-Haond S, Duarte CM, Serrao EA (2008) Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean-Atlantic transition region. J Biogeogr 35:1279–1294CrossRefGoogle Scholar
  7. Arnaud-Haond S, Alberto F, Teixeira S, Procaccini G, Serrao EA, Duarte CM (2005) Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. J Hered 96:434–440PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arnaud-Haond S, Duarte CM, Diaz-Almela E, Marba N, Sintes T, Serrao EA (2012) Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. Plos One 7:e30454PubMedPubMedCentralCrossRefGoogle Scholar
  9. Arriesgado DM, Kurokochi H, Lian C, Nakajima Y, Matsuki Y, Nagai S, Yasuike M, Nakamura Y, Uy WH, Fortes MD, Campos WL, Kb Nadaoka (2014a) Isolation and characterization of novel microsatellite markers for Cymodocea serrulata (Cymodoceaceae), a seagrass distributed widely in the Indo-Pacific region. Plant Species Biol 30:297–299CrossRefGoogle Scholar
  10. Arriesgado DM, Nakajima Y, Matsuki Y, Lian C, Nagai S, Yasuike M, Nakamura Y, Fortes MD, Uy WH, Campos WL, Nakaoka M, Nadaoka K (2014b) Development of novel microsatellite markers for Cymodocea rotundata Ehrenberg (Cymodoceaceae), a pioneer seagrass species widely distributed in the Indo-Pacific. Conserv Genet Resour 6:135–238CrossRefGoogle Scholar
  11. Balestri E, Vallerini F, Lardicci C (2011) Storm-generated fragments of the seagrass Posidonia oceanica from beach wrack—a potential source of transplants for restoration. Biol Cons 144:1644–1654CrossRefGoogle Scholar
  12. Ballesteros E, Cebrian E, Garcia-Rubies A, Alcoverro T, Romero J, Font X (2005) Pseudovivipary, a new form of asexual reproduction in the seagrass Posidonia oceanica. Bot Mar 48:175–177CrossRefGoogle Scholar
  13. Bricker E, Waycott M, Calladine A, Zieman J (2011) High connectivity across environmental gradients and implications for phenotypic plasticity in a marine plant. Mar Ecol Prog Ser 423:57–67CrossRefGoogle Scholar
  14. Cambridge ML, Kuo J (1979) Two new species of seagrasses from Australia, Posidonia sinuosa and P. angustifolia (Posidoniaceae). Aquat Bot 6:307–328CrossRefGoogle Scholar
  15. Campbell ML (2003) Recruitment and colonisation of vegetative fragments of Posidonia australis and Posidonia coriacea. Aquat Bot 76:175–184CrossRefGoogle Scholar
  16. Campey M, Kendrick GA, Walker DI (2002) Interannual and small scale spatial variability in sexual reproduction of the seagrass Posidonia coriacea and Heterozostera tasmanica, Southwestern Australia. Aquat Bot 74:287–297CrossRefGoogle Scholar
  17. Charalambidou I, Santamaria L, Langevoord O (2003) Effect of ingestion by five avian dispersers on the retention time, retrieval and germination of Ruppia maritima seeds. Funct Ecol 17:747–753CrossRefGoogle Scholar
  18. Conacher CA, Poiner IR, O’Donohue M (1994) Morphology, flowering and seed production of Zostera capricorni Aschers in subtropical Australia. Aquat Bot 49:33–46CrossRefGoogle Scholar
  19. Corander J, Majander KK, Cheng L, Merila J (2013) High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol 22:2931–2940PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cox PA, Knox RB (1989) Two-dimensional pollination in hydrophilous plants - convergent evolution in the genera Halodule (Cymodoceaceae), Halophila (Hydrocharitaceae), Ruppia (Ruppiaceae), and Lepilaena (Zannichelliaceae). Am J Bot 76:164–175CrossRefGoogle Scholar
  21. Cox PA, Tomlinson PB (1988) Pollination ecology of a seagrass, Thalassia testudinum (Hydrocharitaceae), in St Croix. Am J Bot 75:958–965CrossRefGoogle Scholar
  22. Cox PA, Laushman RH, Ruckelshaus MH (1992a) Surface and submarine pollination in the seagrass Zostera marina L. Bot J Linn Soc 109:281–291CrossRefGoogle Scholar
  23. Cox PA, Tomlinson PB, Nieznanski K (1992b) Hydrophilous pollination and reproductive morphology in the seagrass Phyllospadix scouleri (Zosteraceae). Plant Syst Evol 180:65–75CrossRefGoogle Scholar
  24. Coyer JA, Hoarau G, Kuo J, Tronholm A, Veldsink J, Olsen JL (2013) Phylogeny and temporal divergence of the seagrass family Zosteraceae using one nuclear and three chloroplast loci. Syst Biodivers 11:271–284CrossRefGoogle Scholar
  25. den Hartog C (1970) Sea-grasses of the world. North Holland Publishing Company, AmsterdamGoogle Scholar
  26. Di Carlo G, Badalamenti F, Jensen AC, Koch EW, Riggio S (2005) Colonisation process of vegetative fragments of Posidonia oceanica (L.) Delile on rubble mounds. Mar Biol 147:1261–1270CrossRefGoogle Scholar
  27. Ducker SC, Pettitt JM, Knox RB (1978) Biology of Australian seagrasses: pollen development and submarine pollination in Amphibolis antarctica and Thalassodendron ciliatum (Cymodoceaceae). Aust J Bot 26:265–285CrossRefGoogle Scholar
  28. Ellstrand N (2014) Is gene flow the most important evolutionary force in plants. Am J Bot 101:737–753PubMedCrossRefPubMedCentralGoogle Scholar
  29. Endler JA (1977) Geographic variation, speciation and clines. Princeton Press, New JerseyGoogle Scholar
  30. Erftemeijer PLA, van Beek JKL, Ochieng CA, Jager Z, Los HJ (2008) Eelgrass seed dispersal via floating generative shoots in the Dutch Wadden Sea: a model approach. Mar Ecol Prog Ser 358:115–124CrossRefGoogle Scholar
  31. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefPubMedCentralGoogle Scholar
  32. Evans SM, Sinclair EA, Poore AGB, Steinberg PD, Kendrick GA, Verges A (2014) Genetic diversity in threatened Posidonia australis seagrass meadows. Conserv Genet 15:717–728CrossRefGoogle Scholar
  33. Fernandez M, Goszczynski D, Liron J, Villegas-Castagnasso E, Carino M, Ripoli M (2013) Comparison of the effectiveness of microsatellites and SNP panels for genetic identification, traceability and assessment of parentage in an inbred Angus herd. Genet Mol Biol 36:185–194PubMedPubMedCentralCrossRefGoogle Scholar
  34. Figuerola J, Green AJ, Santamaria L (2002) Comparative dispersal effectiveness of wigeongrass seeds by waterfowl wintering in south-west Spain: quantitative and qualitative aspects. J Ecol 90:989–1001CrossRefGoogle Scholar
  35. Fischer M, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu K, Holderegger R, Widmer A (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom 18:69CrossRefGoogle Scholar
  36. Gagnaire PA, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, Arnaud-Haond S, Bierne N (2015) Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl 8:769–786PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gärke C, Ytournel F, Bed’hom B, Gut I, Lathrop M, Weigend S (2012) Comparison of SNPs and microsatellites for assessing the genetic structure of chicken populations. Anim Genet 43:419–428PubMedCrossRefGoogle Scholar
  38. Grech A, Wolter J, Coles R, McKenzie L, Rasheed M, Thomas C, Waycott M, Hanert E (2016) Spatial patterns of seagrass dispersal and settlement. Divers Distrib 22:1150–1162CrossRefGoogle Scholar
  39. Hardy OJ (2009) How fat is the tail? Heredity 103:437–438PubMedCrossRefGoogle Scholar
  40. Harwell MC, Orth RJ (2002) Long-distance dispersal potential in a marine macrophyte. Ecology 83:3319–3330CrossRefGoogle Scholar
  41. Hernawan U (2016) Gene flow and genetic structure of the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Ph.D., Edith Cowan University, JoondalupGoogle Scholar
  42. Hernawan U, van Dijk K, Kendrick G, Feng M, Biffin E, Lavery P, McMahon K (2017) Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Mol Ecol 26:1008–1021PubMedCrossRefPubMedCentralGoogle Scholar
  43. Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10:639–650PubMedPubMedCentralCrossRefGoogle Scholar
  44. Inglis GJ, Lincoln Smith MP (1988) Synchronous flowering of estuarine seagrass meadows. Aquat Bot 60:37–48CrossRefGoogle Scholar
  45. Isada AP, Bermejo MG (2009) Review of dispersal means of a newly reported Ruppia maritima L. (Ruppiaceae) population in north central Cuba. Mesoamericana 13:28–36Google Scholar
  46. Jacobs SWL, Brock MA (2011) Ruppiaceae in Flora of Australia. Alismatales to Arales, vol 39. ABRS/CSIRO, MelbourneGoogle Scholar
  47. Jacobs SWL, McColl KA (2011) Zannichelliaceae. Flora of Australia Alismatales to Arales, Book 39. ABRS/CSIRO, Melbourne, AustraliaGoogle Scholar
  48. Jenkins G, Keough M, Ball D, Cook P, Ferguson A, Gay J, Hirst A, Lee R, Longmore A, Macreadie P, Nayar S, Sherman C, Smith T, Ross J, York P (2015) Seagrass Resilience in Port Phillip Bay. Final Report to the Seagrass and Reefs Program for Port Phillip Bay. University of Melbourne, MelbourneGoogle Scholar
  49. Kallstrom B, Nyqvist A, Aberg P, Bodin M, Andre C (2008) Seed rafting as a dispersal strategy for eelgrass (Zostera marina). Aquat Bot 88:148–153CrossRefGoogle Scholar
  50. Kendrick GA, Waycott M, Carruthers TJB, Cambridge ML, Hovey R, Krauss SL, Lavery PS, Les DH, Lowe RJ, Vidal OMI, Ooi JLS, Orth RJ, Rivers DO, Ruiz-Montoya L, Sinclair EA, Statton J, van Dijk JK, Verduin JJ (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62:56–65CrossRefGoogle Scholar
  51. Kendrick G, Orth R, Statton J, Hovey R, Ruiz Montoya L, Lowe R, Krauss S, Sinclair EA (2017) Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol Rev 92:921–938PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P, Glasby T, Udy J (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kinlan B, Gaines S (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020CrossRefGoogle Scholar
  54. Kinlan BP, Gaines SD, Lester SE (2005) Propagule dispersal and the scales of marine community process. Divers Distrib 11:139–148CrossRefGoogle Scholar
  55. Kuo J, Kirkman H (1992) Fruits, seeds and germination in the seagrass Halophila ovalis (Hydrocharitaceae). Bot Mar 35:197–204CrossRefGoogle Scholar
  56. Kuo J, McComb AJ (1989) Seagrass taxonomy, structure and development. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of Seagrasses A treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, AmsterdamGoogle Scholar
  57. Kuo J, Cook IH, Kirkman H (1987) Observations of propagating shoots in the seagrass Amphibolis C. Agardh (Cymodoceaceae). Aquat Bot 27:291–293CrossRefGoogle Scholar
  58. Kuo J, Coles RG, Long WJL, Mellors JE (1991) Fruits and seeds of Thalassia hemprichii (Hydrocharitaceae) from Queensland, Australia. Aquat Bot 40:165–173CrossRefGoogle Scholar
  59. Lacap CDA, Vermaat JE, Rollon RN, Nacorda HM (2002) Propagule dispersal of the SE Asian seagrasses Enhalus acoroides and Thalassia hemprichii. Mar Ecol Prog Ser 235:75–80CrossRefGoogle Scholar
  60. Larson EL, White TA, Ross CL, Harrison RG (2014) Gene flow and the maintenance of species boundaries. Mol Ecol 23:1668–1678PubMedCrossRefPubMedCentralGoogle Scholar
  61. Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463CrossRefGoogle Scholar
  62. Lipkin Y (1975) Halophila stipulacea in Cyprus and Rhodes 1967–1970. Aquat Bot 1:309–320CrossRefGoogle Scholar
  63. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lowe AJ, Harris SA, Ashton SA (2004) Ecological genetics: design, analysis and application. Blackwells, New YorkGoogle Scholar
  65. Macreadie PI, York PH, Sherman CDH (2014) Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery. Ecol Evol 4:450–461PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mata MM, Wijffels SE, Church JA, Tomczak M (2006) Eddy shedding and energy conversions in the East Australian Current. J Geophy Res-Oceans 111Google Scholar
  67. Matsuki Y, Takahashi A, Nakajima Y, Lian CL, Fortes MD, Uy WH, Campos WL, Nakaoka M, Nadaoka K (2013) Development of microsatellite markers in a tropical seagrass Syringodium isoetifolium (Cymodoceaceae). Conserv Genet Resour 5:715–717CrossRefGoogle Scholar
  68. McComb AJ, Cambridge ML, Kirkman H, Kuo J (1981) The biology of Australian seagrasses. In: Pate JS, McComb AJ (eds) The biology of Australian plants. University of Western Australia Press, NedlandsGoogle Scholar
  69. McConchie CA, Knox RB (1989) Pollen-stigma interaction in the seagrass Posidonia australis. Ann Bot 63:235–248CrossRefGoogle Scholar
  70. McMahon K (2005) Recovery of subtropical seagrasses from natural disturbance. Ph.D., University of Queensland, BrisbaneGoogle Scholar
  71. McMahon K, van Dijk K-J, Ruiz-Montoya L, Kendrick GA, Krauss SL, Waycott M, Verduin J, Lowe R, Statton J, Brown E, Duarte C (2014) The movement ecology of seagrasses. Proc R Soc B-Biol Sci 281:20140878CrossRefGoogle Scholar
  72. Meirmans PG, Hedrick PW (2011) Assessing population structure: F-ST and related measures. Mol Ecol Resour 11:5–18PubMedCrossRefPubMedCentralGoogle Scholar
  73. Nakajima Y, Matsuki Y, Lian CL, Fortes MD, Uy WH, Campos WL, Nakaoka M, Nadaoka K (2012) Development of novel microsatellite markers in a tropical seagrass, Enhalus acoroides. Conserv Genet Resour 4:515–517CrossRefGoogle Scholar
  74. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788PubMedCrossRefPubMedCentralGoogle Scholar
  75. Nguyen VX, Detcharoen M, Tuntiprapas P, Soe-Htun U, Sidik JB, Harah MZ, Prathep A, Papenbrock J (2014) Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean. BMC Evol Biol 14:1–18CrossRefGoogle Scholar
  76. Oetjen K, Ferber S, Dankert I, Reusch TBH (2010) New evidence for habitat-specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers. Mar Biol 157:81–89CrossRefGoogle Scholar
  77. Ogden R, Gharbi K, Mugue N, Martinsohn J, Senn H, Davey JW, Pourkazemi M, McEwing R, Eland C, Vidotto M, Sergeev A, Congiu L (2013) Sturgeon conservation genomics: SNP discovery and validation using RAD sequencing. Mol Ecol 22:3112–3123PubMedCrossRefPubMedCentralGoogle Scholar
  78. Orth RJ, Luckenbach M, Moore KA (1994) Seed dispersal in a marine macrophyte—implications for colonization and restoration. Ecology 75:1927–1939CrossRefGoogle Scholar
  79. Orth RJ, Harwell MC, Inglis GJ (2006) Ecology of seagrass seeds and dispersal strategies. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, DordrechtGoogle Scholar
  80. Pettitt JM (1984) Aspects of flowering and pollination in marine angiosperms. Oceanogr Mar Biol Annu Rev 22:315–342Google Scholar
  81. Porter JL, Kingsford RT, Brock MA (2007) Seed banks in arid wetlands with contrasting flooding, salinity and turbidity regimes. Plant Ecol 188:215–234CrossRefGoogle Scholar
  82. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  83. Remizowa MV, Sokoloff DD, Calvo S, Tomasello A, Rudall PJ (2012) Flowers and inflorescences of the seagrass Posidonia (Posidoniaceae, Alismatales). Am J Bot 99:1592–1608PubMedCrossRefPubMedCentralGoogle Scholar
  84. Reusch TBH (2001) New markers—old questions: population genetics of seagrasses. Mar Ecol Prog Ser 211:261–274CrossRefGoogle Scholar
  85. Reusch TBH (2002) Microsatellites reveal high population connectivity in eelgrass (Zostera marina) in two contrasting coastal areas. Limnol Oceanogr 47:78–85CrossRefGoogle Scholar
  86. Rollon RN, Vermaat JE, Nacorda HME (2003) Sexual reproduction in SE Asian seagrasses: the absence of a seed bank in Thalassia hemprichii. Aquat Bot 75:181–185CrossRefGoogle Scholar
  87. Ruiz-Montoya L, Lowe RJ, Van Niel KP, Kendrick GA (2012) The role of hydrodynamics on seed dispersal in seagrasses. Limnol Oceanogr 57:1257–1265CrossRefGoogle Scholar
  88. Ruiz-Montoya RJ, Lowe RJ, Kendrick GA (2015) Contemporary connectivity is sustained by wind- and current-driven seed dispersal among seagrass meadows. Mov Ecol 3:9PubMedPubMedCentralCrossRefGoogle Scholar
  89. Serra IA, Innocenti AM, Di Maida G, Calvo S, Migliaccio M, Zambianchi E, Pizzigalli C, Arnaud-Haond S, Duarte CM, Serrao EA, Procaccini G (2010) Genetic structure in the Mediterranean seagrass Posidonia oceanica: disentangling past vicariance events from contemporary patterns of gene flow. Mol Ecol 19:557–568PubMedCrossRefPubMedCentralGoogle Scholar
  90. Serrano O, Davis G, Lavery P, Duarte C, Martinez-Cortizas A, Mateo M, Masqué P, Arias-Ortiz A, Rozaimi M, Kendrick G (2016) Reconstruction of centennial-scale fluxes of chemical elements in the Australian coastal environment using seagrass archives. Sci Total Environ 541:883–894PubMedCrossRefPubMedCentralGoogle Scholar
  91. Sherman CDH, Stanley AM, Keough MJ, Gardner MG, Macreadie PI (2012) Development of twenty-three novel microsatellite markers for the seagrass, Zostera muelleri from Australia. Conserv Genet Resour 4:689–693CrossRefGoogle Scholar
  92. Sherman CDH, York P, Smith T, Macreadie P (2016) Fine-scale patterns of genetic variation in a widespread clonal seagrass species. Mar Biol 163:82CrossRefGoogle Scholar
  93. Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20CrossRefGoogle Scholar
  94. Sinclair EA, Anthony J, Coupland GT, Waycott M, Barrett MD, Barrett RL, Cambridge ML, Wallace MJ, Dixon KW, Krauss SL, Kendrick GA (2009) Characterisation of polymorphic microsatellite markers in the widespread Australian seagrass, Posidonia australis Hook. f. (Posidoniaceae), with cross-amplification in the sympatric P. sinuosa. Conserv Genet Resour 1:273–276CrossRefGoogle Scholar
  95. Sinclair EA, Gecan I, Krauss SL, Kendrick GA (2014a) Against the odds: complete outcrossing in a monoecious clonal seagrass Posidonia australis (Posidoniaceae). Ann Bot 113:1185–1196PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sinclair EA, Krauss SL, Anthony J, Hovey R, Kendrick GA (2014b) The interaction of environment and genetic diversity within meadows of the seagrass Posidonia australis (Posidoniaceae). Mar Ecol Prog Ser 506:87–98CrossRefGoogle Scholar
  97. Sinclair EA, Statton J, Hovey R, Anthony J, Dixon K, Kendrick G (2016a) Reproduction at the extremes: pseudovivipary and genetic mosaicism in Posidonia australis Hooker (Posidoniaceae). Ann Bot 117:237–247PubMedPubMedCentralGoogle Scholar
  98. Sinclair EA, Anthony JM, Greer D, Ruiz-Montoya L, Evans SE, Krauss SL, Kendrick GA (2016b) Genetic signatures of a Bassian glacial refugia and contemporary connectivity in a marine foundation species. J Biogeogr 43:2209–2222CrossRefGoogle Scholar
  99. Smith NM, Walker DI (2002) Canopy structure and pollination biology of the seagrasses Posidonia australis and P. sinuosa (Posidoneaceae). Aquat Bot 74:57–70CrossRefGoogle Scholar
  100. Smith TM, York PH, Stanley AM, Macreadie PI, Keough MJ, Ross DJ, Sherman CDH (2013) Microsatellite primer development for the seagrass Zostera nigricaulis (Zosteraceae). Conserv Genet Resour 5:607–610CrossRefGoogle Scholar
  101. Smith TM, York PH, Broitman BR, Thiel M, Hays GC, van Sebille E, Putman NF, Macreadie PI, Sherman CDH (2018) Rare long distance dispersal event leads to the world’s largest marine clone. Global Ecol Biogeogr.
  102. Stafford-Bell RE, Chariton AA, Robinson RW (2015) Prolonged buoyancy and viability of Zostera muelleri Irmisch ex Asch vegetative fragments indicate a strong dispersal potential. J Exp Mar Biol Ecol 464:52–57CrossRefGoogle Scholar
  103. Steedman RK, Craig PD (1983) Wind-driven circulation of Cockburn sound. Aust J Mar Freshw Res 34:187–212CrossRefGoogle Scholar
  104. Sumoski SE, Orth RJ (2012) Biotic dispersal in eelgrass Zostera marina. Mar Ecol Prog Ser 471:1–10CrossRefGoogle Scholar
  105. Thomson ACG, York PH, Smith TM, Sherman CDH, Booth DJ, Keough MJ, Ross DJ, Macreadie PI (2015) Seagrass viviparous propagules as a potential long-distance dispersal mechanism. Estuaries Coasts 38:927–940CrossRefGoogle Scholar
  106. Tol SJ, Jarvis JC, Coles RC, York PY, Congdon BC (2015) Tropical seagrass seed dispersal by marinemega-herbivores. Poster presentation from Australian Marine Sciences Association. Deakin University, GeelongGoogle Scholar
  107. Triest L, Sierens T (2013) Is the genetic structure of Mediterranean Ruppia shaped by bird-mediated dispersal or sea currents? Aquat Bot 104:176–184CrossRefGoogle Scholar
  108. Tulipani DC, Lipcius RN (2014) Evidence of eelgrass (Zostera marina) seed dispersal by northern diamondback terrapin (Malaclemys terrapin terrapin) in Lower Chesapeake Bay. Plos One 9:e103346PubMedPubMedCentralCrossRefGoogle Scholar
  109. Unsworth RKF, Collier CJ, Waycott M, McKenzie LJ, Cullen-Unsworth LC (2015) A framework for the resilience of seagrass ecosystems. Mar Pollut Bull 100:34–46PubMedCrossRefPubMedCentralGoogle Scholar
  110. van Dijk JK, van Tussenbroek BI, Jimenez-Duran K, Judith Marquez-Guzman G, Ouborg J (2009) High levels of gene flow and low population genetic structure related to high dispersal potential of a tropical marine angiosperm. Mar Ecol Prog Ser 390:67–77CrossRefGoogle Scholar
  111. van Dijk K-J, Mellors J, Waycott M (2014) Development of multiplex microsatellite PCR panels for the seagrass Thalassia hemprichii (Hydrocharitaceae). Appl Plant Sci 2:1400078CrossRefGoogle Scholar
  112. Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299PubMedPubMedCentralCrossRefGoogle Scholar
  113. van Tussenbroek BI, Monroy-Velazquez LV, Solis-Weiss V (2012) Meso-fauna foraging on seagrass pollen may serve in marine zoophilous pollination. Mar Ecol Prog Ser 469:1–6CrossRefGoogle Scholar
  114. van Tussenbroek B, Villamil N, Marques-Guzman J, Wong R, Monroy-Velazquez L, Solis-Weiss V (2016) Experimental evidence of pollination in marine flowers by invertebrate fauna. Nat Commun 7:12980PubMedPubMedCentralCrossRefGoogle Scholar
  115. Verduin JJ, Walker DI, Kuo J (1996) In situ submarine pollination in the seagrass Amphibolis antarctica: research notes. Mar Ecol Prog Ser 133:307–309CrossRefGoogle Scholar
  116. Verduin JJ, Backhaus JO, Walker DI (2002) Estimates of pollen dispersal and capture within Amphibolis antarctica (Labill.) Sonder and Aschers. Ex Aschers. Meadows. Bull Mar Sci 71:1269–1277Google Scholar
  117. Verity R, Nichols R (2014) What is genetic differentiation, and how should we measure it—GST, D, neither or both? Mol Ecol 23:4216–4225PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wainwright BJ, Arlyza IS, Karl SA (2013a) Isolation and characterization of eighteen polymorphic microsatellite loci for the topical seagrass, Syringodium isoetifolium. Conserv Genet Resour 5:943–945CrossRefGoogle Scholar
  119. Wainwright BJ, Arlyza IS, Karl SA (2013b) Isolation and characterization of twenty-four polymorphic microsatellite loci for the tropical seagrass, Thalassia hemprichii. Conserv Genet Resour 5:939–941CrossRefGoogle Scholar
  120. Waples R, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439PubMedCrossRefPubMedCentralGoogle Scholar
  121. Waycott M, Sampson JF (1997) The mating system of an hydrophilous angiosperm Posidonia australis (Posidoniaceae). Am J Bot 84:621–625PubMedCrossRefPubMedCentralGoogle Scholar
  122. Waycott M, McMahon KM, Mellors JE, Calladine A, Kleine D (2004) A guide to tropical seagrasses of the Indo-West Pacific. James Cook University, Townsville, p 72. ISBN: 10 0864437269Google Scholar
  123. Waycott M, McMahon K, Lavery P (2014) A guide to southern temperate seagrasses. CSIRO Publishing, MelbourneGoogle Scholar
  124. West RJ (1983) The seagrasses of New South Wales estuaries and embayments. Wetlands 3:34–44Google Scholar
  125. White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc R Soc B-Biol Sci 277:1685–1694CrossRefGoogle Scholar
  126. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedPubMedCentralGoogle Scholar
  127. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar
  128. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354PubMedCrossRefPubMedCentralGoogle Scholar
  129. Wu K, Chen C-N, Soong K (2016) Long distance dispersal potential of two seagrasses Thalassia hemprichii and Halophila ovalis. PLoS ONE 11:e0156585PubMedPubMedCentralCrossRefGoogle Scholar
  130. Xu NN, Yu S, Zhang JG, Tsang PKE, Chen XY (2010) Microsatellite primers for Halophila ovalis and cross-amplification in H. minor (Hydrocharitaceae). Am J Bot 97:E56–E57PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kathryn McMahon
    • 1
    Email author
  • Elizabeth A. Sinclair
    • 2
  • Craig D. H. Sherman
    • 3
  • Kor-Jent van Dijk
    • 4
  • Udhi E. Hernawan
    • 1
    • 5
  • Jennifer Verduin
    • 6
  • Michelle Waycott
    • 7
  1. 1.Centre for Marine Ecosystems Research and School of ScienceEdith Cowan UniversityJoondalupAustralia
  2. 2.School of Biological Sciences and Oceans InstituteThe University of Western AustraliaCrawleyAustralia
  3. 3.School of Life and Environmental SciencesDeakin UniversityGeelongAustralia
  4. 4.School of Biological SciencesUniversity of AdelaideAdelaideAustralia
  5. 5.Research Centre for Oceanography (P2O), Indonesian Institute of Sciences (LIPI)Ancol Timur, JakartaIndonesia
  6. 6.School of Veterinary and Life SciencesMurdoch UniversityMurdochAustralia
  7. 7.School of Biological Sciences, Department of Environment Water and Natural ResourcesUniversity of AdelaideAdelaideAustralia

Personalised recommendations