Anatomy and Structure of Australian Seagrasses

  • J. KuoEmail author
  • M. L. Cambridge
  • H. Kirkman


Seagrasses are monocotyledonous angiosperms, and as with terrestrial angiosperms, they have vegetative organs (roots, rhizomes and shoots with leaf sheaths and leaf blades), and reproductive organs (flowers, fruits and seeds). They have adapted to a marine environment in a saline medium, and have rather simple tissues and cell types such as a thin cuticle and epidermal cells with concentrated chloroplasts but lack stomata in the leaves. Within the vascular bundles, the cell walls of vascular bundle sheath cells are either lignified, suberized or have wall ingrowths. The number and size of xylem elements are much reduced in seagrasses. Phloem cells have thin or nacreous wall and/or thick walled sieve elements. Whether these structural variations are significant in solute translocation remains to be determined. Seagrass rhizomes are usually herbaceous, but some become woody. They are either monopodially or sympodially branched, with adventitious roots. Roots may be branched and bear roots hairs, depending on the substratum. Air lacunae are continuous within all vegetative and reproductive organs, with regular septa interrupting the air lacunae. Unusual apoplastic fungal hyphae grow in the intercellular spaces of living leaf tissue of the subtidal Zostera muelleri . Seagrasses are monoecious or dioecious plants with hydrophilous pollination. They have unusual filamentous pollen or pollen grains that form long chains. Fruits and seeds have either a period of dormancy or germinate as they are being released. Unlike seeds of other seagrasses, the embryos of Amphibolis and Thalassodendron do not store starch but instead obtain nutrients required for the prolonged development phase of the viviparous seedlings directly from the parent plant through ‘transfer cells’. Morphological and anatomical organization of both vegetative and reproductive organs vary among Australian seagrass taxonomic groups, reflecting their different evolutionary origins, as well as providing a means of indentifying genera and species with classical taxonomy.



Thanks to L. Y. Kuo and John Murphy for the preparation of the Figures. Three anonymous reviewers who made valuable and constructive comments on the early version of the manuscript. This chapter honors to Arthur J McComb, who provided inspiration, encouragement and support, and who coauthored the first definitive book on Australian seagrasses.


  1. Arber A (1920) Water plants. A study of aquatic angiosperms. Cambridge University Press, CambridgeGoogle Scholar
  2. Arber A (1925) Monocotyledons. A morphological study. Cambridge University Press, CambridgeGoogle Scholar
  3. Barnabas AD (1983) Composition and fine structural features of longitudinal veins in leaves of Thalassodendron ciliatum. S Afr J Bot 2:317–325CrossRefGoogle Scholar
  4. Barnabas AD (1988) Apoplastic tracer studies in the leaves of a seagrass. I. Pathway through epidermal and mesophyll tissues. Aquat Bot 32:63–77CrossRefGoogle Scholar
  5. Barnabas AD (1989) Apoplastic tracer studies in the leaves of a seagrass. II. Pathway into leaf veins. Aquat Bot 35:375–386CrossRefGoogle Scholar
  6. Barnabas AD (1991) Thalassodendron ciliatum (Forssk.) den Hartog: root structure and histochemistry in relation to apoplastic transport. Aquat Bot 40:129–143CrossRefGoogle Scholar
  7. Barnabas AD (1994) Apoplastic and symplastic pathways in leaves and roots of the seagrass Halodule uninervis (Forssk.) Aschers. Aquat Bot 47:155–174CrossRefGoogle Scholar
  8. Barnabas AD (1996) Casparian band-like structures in the root hypodermis of some aquatic angiosperms. Aquat Bot 55:217–225CrossRefGoogle Scholar
  9. Barnabas AD, Kasvan S (1983) Structural features of the leaf epidermis of Halodule uninervis. S Afr J Bot 2:311–316CrossRefGoogle Scholar
  10. Birch WR (1981) Morphology of germinating seeds of the seagrass Halophila spinulosa (R. Br.) Aschers. (Hydrocharitaceae). Aquat Bot 17:79–90CrossRefGoogle Scholar
  11. Black JM (1913) The flowering and fruiting of Pectinella antarctica (Cymodocea antarctica) Trans Proc Roy Soc S Aust 37: 1–5Google Scholar
  12. Bragg LH, McMillan C (1986) SEM comparison of fruits and seeds of Syringodium (Cymodoceaceae) from Texas, U.S. Virgin Islands, and the Philippines. Contrib Marine Sci 30:91–103Google Scholar
  13. Cambridge ML, Kuo J (1982) Morphology, anatomy and histochemistry of the Australian seagrasses of the genus Posidonia König (Posidoninaceae) III. Posoinida sinuosa Cambridge & Kuo. Aquat Bot 14:1–14Google Scholar
  14. Cambridge ML, Carstairs SA, Kuo J (1983) An unusual method of vegetative propagation in Australian Zosteraceae. Aquat Bot 15:201–203 Google Scholar
  15. Clough BF, Attwill PM (1980) Primary productivity of Zostera muellerii Irmisch ex Aschers. in Westernport Bay (Victoria, Australia). Aquat Bot 9:1–13CrossRefGoogle Scholar
  16. de los Santos CB, Onoda Y, Vergara JJ, Pérez-Lloréns JL, Bouma TJ, La Nafie YA, Cambridge ML, Brun FG (2016) A comprehensive analysis of mechanical and morphological traits in temperate and tropical seagrass species. Mar Ecol Prog Ser 551:81–94Google Scholar
  17. Devarajan PT, Suryanarayanan TS, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Indian J Mar Sci 31:73–74Google Scholar
  18. Doohan ME, Newcomb EH (1976) Leaf ultrastructure and δ13C values of three seagrasses from the Great Barrier Reef. Aust J Plant Physiol 3:9–23CrossRefGoogle Scholar
  19. Ducker SC, Foord NJ, Knox RB (1977) Biology of Australian seagrasses: the genus Amphibolis Agardh (Cymodoceaceae). Aust J Bot 25:67–95CrossRefGoogle Scholar
  20. Ducker SC, Pettitt JM, Knox RB (1978) Biology of Australian seagrasses: pollen development and submarine pollination in Amphibolis antarctica and Thalassodendron ciliatum (Cymodoceaceae). Aust J Bot 26:265–285CrossRefGoogle Scholar
  21. García M, Kuo J, Kilminster K, Walker D, Rosselló-Mora R, Duarte CM (2005) Microbial colonization in the seagrass Posidonia spp. roots. Mar Biol Res 1:388–395CrossRefGoogle Scholar
  22. Garcias-Bonet N, Arrieta JM, de Santana CN, Durate CM, Marbà N (2012) Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Front Microbiol 3:1–16CrossRefGoogle Scholar
  23. Hocking PJ, Cambridge ML, McComb AJ (1980) Nutrient accumulation in the fruits of two species of seagrasses, Posidonia australis and P. sinuosa. Ann Bot 45:149–161CrossRefGoogle Scholar
  24. Hocking PJ, Cambridge ML, McComb AJ (1981) The nitrogen and phosphorus nutrition of developing plants of two seagrasses, Posidonia australis and P. sinuosa. Aquat Bot 11:245–262CrossRefGoogle Scholar
  25. Isaacs FM (1969) Floral structure and germination in Cymodocea ciliata. Phytomporhology 19:44–51 Google Scholar
  26. Kaul RB (1978) Morphology of germination and establishment of aquatic seedlings in Alismataceae and Hydrocharitaceae. Aquat Bot 5:139–147Google Scholar
  27. Kay QON (1971) Floral structure in marine angiosperms Cymodocea serrulata and Thalassodendron ciliatum (Cymodoceaceae). Bot J Linn Soc. 64:423–429Google Scholar
  28. Kendrick GA, Waycott M, Carruthers TJB, Cambridge ML, Hovey RK, Krauss SL, Lavery PS, Les DH, Lowe RJ, Mascaró OV (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62:56–65CrossRefGoogle Scholar
  29. Kuo J (1978) Morphology, anatomy and histochemistry of the Australian seagrasses of the genus Posidonia König (Posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis Hook. f. Aquat Bot 5:171–190CrossRefGoogle Scholar
  30. Kuo J (1983a) Notes on the biology of Australian seagrasses. Proc Linn Soc NSW 106:225–245Google Scholar
  31. Kuo J (1983b) Nacreous wall sieve elements in marine Angiosperms. Amer J Bot 70:159–164CrossRefGoogle Scholar
  32. Kuo J (1984) Structural aspects of apoplastic fungal hyphae in a marine angiosperm Zostera muelleri Irmisch ex Aschers. (Zosteraceae). Protoplasma 121:1–7CrossRefGoogle Scholar
  33. Kuo J (1993a) Functional leaf anatomy and ultrastructure in a marine angiosperm, Syringodium isoetifolium (Aschers.) Dandy (Cymodoceaceae). Aust J Mari Freshwat Res 44:59–73Google Scholar
  34. Kuo J (1993b) Root anatomy and rhizosphere ultrastructure in tropical seagrasses. Aust J Mari Freshwat Res 44:75–84Google Scholar
  35. Kuo J (2005) A revision on the genus Heterozostera (Zosteraceae). Aquat Bot 81:97–140CrossRefGoogle Scholar
  36. Kuo J, Cambridge ML (1978) Morphology, anatomy and histochemistry of the Australian seagrasses of the genus Posidonia König (Posidoniaceae). II. Rhizome and root of Posidonia australis Hook. f. Aquat Bot 5:191–206CrossRefGoogle Scholar
  37. Kuo J, Kirkman H (1987) Floral and seedling morphology and anatomy of Thalassodendron pachyrhizum den Hartog (Cymodoceaceae). Aquat Bot 29:1–17CrossRefGoogle Scholar
  38. Kuo J, Kirkman H (1990) Anatomy of viviparous seagrasses seedlings of Amphibolis and Thalassodendron and their nutrient supply. Bot Mar 33:117–126CrossRefGoogle Scholar
  39. Kuo J, Kirkman H (1992) Fruits, seeds, and germination in the seagrass Halophila ovalis (Hydrocharitaceae). Bot Mar 35:197–204CrossRefGoogle Scholar
  40. Kuo J, Kirkman H (1995) Halophila decipiens Ostenfeld in estuaries of southwestern Australia. Aquat Bot 51:335–340CrossRefGoogle Scholar
  41. Kuo J, Kirkman H (1996) Seedling development of selected Posidonia species from southwest Australia. In: Kuo J, Phillips RC, Walker DI, Kirkman H (eds) Seagrass biology: proceedings of an international workshop. Faculty of Science, University of Western Australia, Perth, pp 57–64Google Scholar
  42. Kuo J, McComb AJ (1989) Seagrass taxonomy, structure and development. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the australian region. Elsevier, Amsterdam, pp 6–73Google Scholar
  43. Kuo J, McComb AJ, Cambridge ML (1981) Ultrastructure of the seagrass rhizosphere. New Phytol 89:139–143CrossRefGoogle Scholar
  44. Kuo J, Cook IH, Kirkman H (1987) Observations on vegetative propagules in the seagrass genus Amphibolis C. Agardh. (Cymodoceaceae). Aquat Bot 27:291–293CrossRefGoogle Scholar
  45. Kuo J, Ridge RW, Lewis SV (1990) The leaf internal morphology and ultrastructure of Zostera muelleri Irmisch ex Aschers. (Zosteraceae): a comparative study of the intertidal and subtidal forms. Aquat Bot 36:217–236CrossRefGoogle Scholar
  46. Kuo J, Lee Long W, Coles RG (1993) Occurrence and fruit and seed biology of Halophila tricostata Greenway (Hydrocharitaceae). Aust J Mari Freshwat Res 44:43–57Google Scholar
  47. Kuo J, den Hartog C (2006) Seagrass morphology, anatomy, and ultrastructure. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: Biology, Ecology and Conservation, pp 51–87. Springer, Dordrecht, The Netherlands Google Scholar
  48. Küsel K, Pinkart HC, Drake HL, Devereux R (1999) Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the seagrass Halodule wrightii. Apply Environ Microbiol 65:5117–5123Google Scholar
  49. Larkum AWD (1995) Halophila capricorni (Hydrocharitaceae): a new species of seagrass from the Coral Sea. Aquat Bot 51: 319-328 Google Scholar
  50. Ma G, Zhang X, Bunn E, Dixon K (2012) Megasporogensis and embryogenesis in three sympatric Posidonia species. Aquat Bot 100:1–7CrossRefGoogle Scholar
  51. McComb AJ, Cambridge M, Kirkman H, Kuo J (1981) Biology of Australian seagrasses. In: Pate JS, McComb AJ (eds) The Biology of Australian Plants, pp 258–293. University of West Australian Press, PerthGoogle Scholar
  52. McConchie CA, Knox RB (1989a) Pollination and reproductive biology of seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian Region. Elsevier, Amsterdam, pp 74–111Google Scholar
  53. McConchie CA, Knox RB (1989b) Pollen–stigma interaction in the seagrass Posidonia australis. Ann Bot 63:235–248CrossRefGoogle Scholar
  54. McConchie CA, Ducker SC, Knox RB (1982a) Biology of Australian seagrasses: floral development and morphology of Amphibolis (Cymodoceaceae). Aust J Bot 30:251–264CrossRefGoogle Scholar
  55. McConchie CA, Knox RB, Ducker SC (1982b) Pollen wall structure and cytochemistry in the seagrass Amphibolis griffithii (Cymodoceaceae). Ann Bot 50:729–732CrossRefGoogle Scholar
  56. McMillan C (1988) Seed germination and seedling development of Halophila decipiens Ostenfeld (Hydrocharitaceae). Aquat Bot 31:169–176Google Scholar
  57. McMillan C, Bragg LH (1987) Comparison of fruits of Syringodium (Cymodoceaceae) from Texas, U.S. Virgin Islands and the Philippines. Aquat Bot 28:97–100Google Scholar
  58. Ostenfeld CH (1916) Contribution to Western Australian Botany. Part 1. Dan Bot Ark 2:1–44Google Scholar
  59. Pettitt JM (1976) Pollen wall and stigma surface in the marine angiosperms Thalassia and Thalassodendron. Micron 7:21–31Google Scholar
  60. Pettitt JM (1980) Reproduction in seagrass: nature of pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann Bot 45:257–271CrossRefGoogle Scholar
  61. Pettitt JM (1984) Aspects of flowering and pollination in marine angiosperms. Oceanogr Mar Biol Annu Rev 22:315–342Google Scholar
  62. Pettitt JM, Jermy AC (1975) Pollen in hydrophilous angiosperms. Micron 5:377–405Google Scholar
  63. Pettitt JM, McConchie MC, Ducker SC, Knox RB (1980) Unique adaptations for submarine pollination in seagrasses. Nature 286:487–489CrossRefGoogle Scholar
  64. Pettitt JM, McConchie CA, Ducker SC, Knox RB (1983) Reproduction in seagrasses pollination in Amphibolis antarctica. Proc R Soc Lond. (Ser B) 219:119–135CrossRefGoogle Scholar
  65. Pettitt JM, McConchie CA, Ducker SC, Knox RB (1984) Reproduction in seagrasses: pollen wall morphogenesis in Amphibolis antarctica and wall structure in filiform grains. Nord J Bot 4:199–216CrossRefGoogle Scholar
  66. Remizowa MV, Sokoloff DD, Calvo S, Tomasello A, Rudall PJ (2012) Flowers and inflorescence of the seagrass Posidonia (Posidoceaceae, Alismatales). Am J Bot 99:1592–1608CrossRefPubMedGoogle Scholar
  67. Roberts DG (1993) Root-hair structure and development in the seagrass Halophila ovalis (R. Br.) Hook. f. Aust J Mar Freshw Res 44:85–100Google Scholar
  68. Roberts DG, McComb AJ, Kuo J (1984) The structure and continuity of the lacunae system of the seagrass Halophila ovalis (R. Br.) Hook. f. (Hydrocharitaceae). Aquat Bot 18:377–388CrossRefGoogle Scholar
  69. Roberts DG, McComb AJ, Kuo J (1985) Root development in the seagrass Halophila ovalis (R.Br) Hook. f. (Hydrocharitaceae), with particular reference to the root lacunae. New Phytol 100:25–36CrossRefGoogle Scholar
  70. Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45CrossRefGoogle Scholar
  71. Sauvageau C (1889) Contribution à l’étude du système mécanique dans la racine des plantes aquatiques. Les Zostera, Cymodocea et Posidonia. J Bot Paris 169–181Google Scholar
  72. Sauvageau C (1890a) Observations sur la sturacture des feuilles des plantes aquatiques. J Bot Paris 4:41–50; 68–76; 117–126; 129–135; 173–178; 181–192; 221–229; 237–245Google Scholar
  73. Sauvageau C (1890b) Sur la structure de la feuille des Hydrocharitadées marines. J Bot Paris 4(269–275):289–295Google Scholar
  74. Sauvageau C (1890c) Sur la structure de la feuille des genre Halodule et Phyllospadix. J Bot Paris 4:321–332Google Scholar
  75. Sauvageau C (1891a) Sur la feuilles monocotylédons aquatiques. Annls Sci Nat Bot Ser 7(13):103–296Google Scholar
  76. Sauvageau C (1891b) Sur la tige des Cymodocées Aschs. J Bot Paris 5(205–211):235–243Google Scholar
  77. Sauvageau C (1891c) Sur la racine des Cymodocées. Ass fr Av Sci Congr Marseille, 482–477Google Scholar
  78. Sauvageau C (1891d) Sur la tige des Zostera. J Bot Paris 5(33–45):59–68Google Scholar
  79. Sinclair EA, Hovey R, Statton J, Fraser MW, Cambridge ML, Kendrick GA (2016a) Comment on ‘seagrass viviparous propagules as a potential long-distance dispersal mechanism’ by A CG Thomson et al. Estuaries Coasts 39:290–293Google Scholar
  80. Sinclair AE, Station J, Renae H, Anthony JM, Dixon KW, Kendrick GA (2016b) Production at extremes: pseudoviviparty, hybridization and genetic mosatic in Posidonia australis (Posidoniaceae). Ann Bot 117: 237–247Google Scholar
  81. Stafford-Bell RE, Chariton AA, Robinso RW (2016) Germination and early-stage development in the seagrass, Zostera muelleri Irmisch ex Asch. in response to multiple stressors. Aquat Bot 128:18–25CrossRefGoogle Scholar
  82. Statton J, Cambridge ML, Dixon KW, Kendrick GA (2013) Aquaculture of Posidonia australis seedlings for seagrass restoration programs: effect of sediment type and organic enrichment on growth. Restor Ecol 21:250–259CrossRefGoogle Scholar
  83. Statton J, Kendrick GA, Dixon KW, Cambridge ML (2014) Inorganic nutrient supplements constrain restoration potential of seedlings of the seagrass, Posidonia australis. Restor Ecol 22:196–203CrossRefGoogle Scholar
  84. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2014) Diversity and antimicrobial activity of endophytic fungi isolated from the seagrass Enhalus acoroides. Indian J Geo-Mar Sci 43:785–797Google Scholar
  85. Tepper JGO (1882) Further observations on the propagation of Cymodocea antarctica. Trans Proc Royc Soc S Aust 4:47–49Google Scholar
  86. Tomlinson PB (1974) Vegetative morphology and meristem dependence: the foundation of productivity in seagrasses. Aquaculture 4:107–130CrossRefGoogle Scholar
  87. Tomlinson PB (1982) VII. Helobiae (Alismatidae). In: Metcalfe CR (ed) Anatomy of the monocotyledons. Clarendon Press, Oxford, 522 ppGoogle Scholar
  88. Tomlinson PB, Posluszny U (1978) Aspects of floral morphology and development in the seagrass Syringodium filiformes (Cymodoceaceae). Bot Gaz 139:333–345CrossRefGoogle Scholar
  89. Torta L, Piccolo L, Piazza G, Burruano S, Colombo P, Ottonello D, Perrone R, Maida GD, Pirrotta M, Tomassello A, Calvo S (2015) Lulwoana sp., a dark septate endophyte in roots of Posidonia oceanica (L.) Delile seagrass. Pl Biol 17:505–511CrossRefGoogle Scholar
  90. Tyerman SD (1989) Solute and water relations of seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian Region. Elsevier, Amsterdam, pp 723–759Google Scholar
  91. Tyerman SD, Hatcher AI, West RJ, Larkum AWD (1984) Posidonia australis growing in altered salinities: leaf growth, regulation of turgor and the development of osmotic gradients. Aust J Plant Physiol 11:35–47CrossRefGoogle Scholar
  92. Venkatachalam A, Thirunavukkarasu N, Suryanaryanan TS (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65CrossRefGoogle Scholar
  93. Vohnik M, Borovec O, Zupan I, Vondrásek D, Petrtyl M, Sudová R (2015) Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean seagrass Posidonia oceanica. Mycorrhiza 25:663–672CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Microscopy, Microanalysis and CharacterizationThe University of Western AustraliaCrawley, PerthAustralia
  2. 2.The Oceans Institute & Biological SciencesThe University of Western AustraliaCrawley, PerthAustralia
  3. 3.5a Garden GroveSeaholmeAustralia

Personalised recommendations