Advertisement

Seagrasses of Southern and South-Western Australia

  • Kieryn Kilminster
  • Renae Hovey
  • Michelle Waycott
  • Gary A. Kendrick
Chapter

Abstract

The coastal waters of southern and south-western Australia are home to almost 30,000 km2 of seagrass, dominated by temperate endemic species of the genera Posidonia and Amphibolis. In this region, seagrasses are common in estuaries and sheltered coastal areas including bays, lees of islands, headlands, and fringing coastal reefs. Additionally, extensive meadows exist in the inverse estuaries of the Gulfs in South Australia, and in Shark Bay in Western Australia. This chapter explores (i) how geological time has shaped the coastline and influenced seagrasses, (ii) present day habitats and drivers, (iii) how biogeography patterns previously reported have been altered due to anthropogenic and climate impacts, and (iv) emerging threats and management issues for this region. Species diversity in this region rivals those of tropical environments, and many species have been found more than 30 km offshore and at depths greater than 40 m. Seagrasses in this region face a future of risk from multiple stressors at the ecosystem scale with coastal development, eutrophication, extreme climate events and global warming. However, our recent improved understanding of seagrass recruitment, restoration and resilience provides hope for the future management of these extraordinary underwater habitats.

References

  1. Balzano S, Ellis AV, Le Lan C, Leterme SC (2015) Seasonal changes in phytoplankton on the north-eastern shelf of Kangaroo Island (South Australia) in 2012 and 2013. Oceanologia 57(3):251–262CrossRefGoogle Scholar
  2. Bloomfield A, Gillanders B (2005) Fish and invertebrate assemblages in seagrass, mangrove, saltmarsh, and nonvegetated habitats. Estuaries Coasts 28(1):63–77CrossRefGoogle Scholar
  3. Brooke BP, Olley J, Pietsch T, Playford P, Haines P, Murray-Wallace C, Woodroffe C (2014) Chronology of quaternary coastal aeolianite deposition and the drowned shorelines of southwestern Western Australia—a reappraisal. Quatern Sci Rev 93:106–124CrossRefGoogle Scholar
  4. Bryars S (2003) An inventory of important coastal fisheries habitats in South Australia. Fish Habitat Program, Primary Industries and Resources South AustraliaGoogle Scholar
  5. Bryars S, Rowling K (2009) Benthic habitats of eastern Gulf St Vincent: Major changes in benthic cover and composition following European settlement of Adelaide. Trans R Soc S Aust 133: 318–338Google Scholar
  6. Bryars S, Neverauskas V (2004) Natural recolonisation of seagrasses at a disused sewage sludge outfall. Aquat Bot 80(4):283–289CrossRefGoogle Scholar
  7. Bryars S, Neverauskas V, Brown P, Gilliland J, Gray L, Halliday L (2003) Degraded seagrass meadows and evidence of eutrophication in Western Cove, Kangaroo Island. Primary Industries and Resources South Australia, AdelaideGoogle Scholar
  8. Cambridge ML, Hocking PJ (1997) Annual primary production and nutrient dynamics of the seagrasses Posidonia sinuosa and Posidonia australis in south-western Australia. Aquat Bot 59(3–4):277–295CrossRefGoogle Scholar
  9. Cambridge M, Kendrick G (2009) Contrasting responses of seagrass transplants (Posidonia australis) to nitrogen, phosphorus and iron addition in an estuary and a coastal embayment. J Exp Mar Biol Ecol 371(1):34–41CrossRefGoogle Scholar
  10. Cambridge ML, Kuo J (1979) Two new species of seagrasses from Australia, Posidonia sinuosa and P. angustifolia (Posidoniaceae). Aquat Bot 6:307–328CrossRefGoogle Scholar
  11. Cambridge M, McComb A (1984) The loss of seagrasses in Cockburn Sound, Western Australia. I. The time course and magnitude of seagrass decline in relation to industrial development. Aquat Bot 20(3–4):229–243CrossRefGoogle Scholar
  12. Cambridge ML, Chiffings AW, Brittan C, Moore L, McComb AJ (1986) The loss of seagrass in Cockburn Sound, Western Australia. II. Possible causes of seagrass decline. Aquat Bot 24:269–285CrossRefGoogle Scholar
  13. Campey M, Waycott M, Kendrick G (2000) Re-evaluating species boundaries among members of the Posidonia ostenfeldii species complex (Posidoniaceae)—morphological and genetic variation. Aquat Bot 66(1):41–56CrossRefGoogle Scholar
  14. Carruthers TJB, Walker DI, Kendrick GA (1999) Abundance of Ruppia megacarpa Mason in a seasonally variable estuary. Estuar Coast Shelf Sci 48:497–509CrossRefGoogle Scholar
  15. Carruthers TJB, Dennison WC, Kendrick GA, Waycott M, Walker DI, Cambridge ML (2007) Seagrasses of south-west Australia: a conceptual synthesis of the world’s most diverse and extensive seagrass meadows. J Exp Mar Biol Ecol, p 350Google Scholar
  16. Coles R, McKenzie L, De’ath G, Roelofs A, Long WL (2009) Spatial distribution of deepwater seagrass in the inter-reef lagoon of the great barrier reef world heritage area. Mar Ecol Prog Ser 392:57–68CrossRefGoogle Scholar
  17. Collier CJ, Lavery PS, Masini RJ, Ralph PJ (2007) Morphological, growth and meadow characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Mar Ecol Prog Ser 337:103–115CrossRefGoogle Scholar
  18. Collier CJ, Prado P, Lavery PS (2010) Carbon and nitrogen translocation in response to shading of the seagrass Posidonia sinuosa. Aquat Bot 93(1):47–54CrossRefGoogle Scholar
  19. Connolly R (1994) A comparison of fish assemblages from seagrass and unvegetated areas of a southern Australian estuary. Mar Freshw Res 45(6):1033–1044CrossRefGoogle Scholar
  20. Connolly R, Jones GK (1996) Determining effects of an oil spill on fish communities in a mangrove-seagrass ecosystem in southern Australia. Australas J Ecotoxicol 2(1):3–15Google Scholar
  21. Connolly R, Jenkins G, Loneragan N (1999) Seagrass dynamics and fisheries sustainability. In: Seagrass in Australia—strategic review and development of an R&D plan. CSIRO PublishingGoogle Scholar
  22. Connolly RM, Hindell JS, Gorman D (2005) Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats. Mar Ecol Prog Ser 286:69–79CrossRefGoogle Scholar
  23. de los Santos CB, Brun FG, Onoda Y, Cambridge ML, Bouma TJ, Vergara JJ, Pérez-Lloréns JL (2012) Leaf-fracture properties correlated with nutritional traits in nine Australian seagrass species: implications for susceptibility to herbivory. Mar Ecol Progress Ser 458:89–102Google Scholar
  24. de los Santos CB, Onoda Y, Vergara JJ, Pérez-Lloréns JL, Bouma TJ, La Nafie YA, Cambridge ML, Brun FG (2016) A comprehensive analysis of mechanical and morphological traits in temperate and tropical seagrass species. Mar Ecol Progress Ser 551:81–94Google Scholar
  25. De Villèle X, Verlaque M (1995) Changes and degradation in a Posidonia oceanica bed invaded by the introduced tropical alga Caulerpa taxifolia in the north western Mediterranean. Bot Mar 38:79–87CrossRefGoogle Scholar
  26. Dick J, Haynes D, Tibby J, Garcia A, Gell P (2011) A history of aquatic plants in the Coorong, a Ramsar-listed coastal wetland, South Australia. J Paleolimnol 46(4):623–635CrossRefGoogle Scholar
  27. Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377CrossRefGoogle Scholar
  28. Edyvane K (1999) Conserving marine biodiversity in South Australia-part 2-identification of areas of high conservation value in South Australia. Aquatic Sciences, Research Report Series, p 283Google Scholar
  29. Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5(7):505–509CrossRefGoogle Scholar
  30. Fraser MW, Kendrick GA, Statton J, Hovey RK, Zavala-Perez A, Walker DI (2014) Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J Ecol 102(6):1528–1536CrossRefGoogle Scholar
  31. Fraser MW, Short J, Kendrick G, McLean D, Keesing J, Byrne M, Caley MJ, Clarke D, Davis AR, Erftemeijer PL (2017) Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study. Ecol Ind 78:229–242CrossRefGoogle Scholar
  32. Gattuso J-P, Gentili B, Duarte CM, Kleypas J, Middelburg JJ, Antoine D (2006) Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production. Biogeosci Discuss 3(4):895–959CrossRefGoogle Scholar
  33. Gayland S (2009) Ambient water quality of Boston and Proper Bays, Port Lincoln 1997–2008. In: Environment Protection Authority Adelaide, South Australia, p 49Google Scholar
  34. Green EP, Short FT (2003) World atlas of seagrasses. University of California PressGoogle Scholar
  35. Hart DGD (1999) Nearshore seagrass change between 1970s and 1996, mapped using digital orthophotography. DEHAA Adelaide, Port Lincoln Proper–Boston Bay South AustraliaGoogle Scholar
  36. Hastings K, Hesp P, Kendrick GA (1995) Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean Coast Manag 26(3):225–246CrossRefGoogle Scholar
  37. Heck KL, Carruthers TJ, Duarte CM, Hughes AR, Kendrick G, Orth RJ, Williams SW (2008) Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11(7):1198–1210CrossRefGoogle Scholar
  38. Hegge I, Kendrick G (2005) Changes in the distribution of vegetated habitats (seagrasses and reefs) in Esperance Bay between 1956 and 2001. In: Wells FE, Walker DI, Kendrick GA (eds) The marine flora and fauna of Esperance, Western Australia. Proceedings of 12th international marine biological workshop. W.A. Museum, Perth, pp 109–122Google Scholar
  39. Hemer M (2006) The magnitude and frequency of combined flow bed shear stress as a measure of exposure on the Australian continental shelf. Cont Shelf Res 26(11):1258–1280CrossRefGoogle Scholar
  40. Hillman K, McComb AJ, Walker DI (1995) The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan/Canning Estuary, Western Australia. Aquat Bot 51(1–2):1–54CrossRefGoogle Scholar
  41. Huisman J, Sim C, Walker D (1999) A collection of deep-water marine plants from Rottnest Island. In: Walker DI, Wells FE (eds) The seagrass flora and fauna of Rottnest Island, Western Australia. Western Australian Museum, PerthGoogle Scholar
  42. Hyndes GA, Lavery PS (2005) Does transported seagrass provide an important trophic link in unvegetated, nearshore areas? Estuar Coast Shelf Sci 63(4):633–643CrossRefGoogle Scholar
  43. Hyndes G, Platell M, Potter I, Lenanton R (1999) Does the composition of the demersal fish assemblages in temperate coastal waters change with depth and undergo consistent seasonal changes? Mar Biol 134(2):335–352CrossRefGoogle Scholar
  44. Hyndes GA, Nagelkerken I, McLeod RJ, Connolly RM, Lavery PS, Vanderklift MA (2014) Mechanisms and ecological role of carbon transfer within coastal seascapes. Biol Rev 89: 232–254. http://doi.org/10.1111/brv.12055
  45. Hyndes GA, Heck KL, Vergés A, Harvey ES, Kendrick GA, Lavery PS, McMahon K, Orth RJ, Pearce A, Vanderklift M (2016) Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66(11):938–948CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ince R, Hyndes GA, Lavery PS, Vanderklift MA (2007) Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuar Coast Shelf Sci 74(1–2):77–86CrossRefGoogle Scholar
  47. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78(7):1946–1957CrossRefGoogle Scholar
  48. Kämpf J (2014) South Australia’s large inverse estuaries: on the road to ruin. In: Wolanski E (ed) Estuaries of Australia in 2050 and beyond. Springer, pp 153–166Google Scholar
  49. Kendrick G, Eckersley J, Walker D (1999) Landscape-scale changes in seagrass distribution over time: a case study from success Bank, Western Australia. Aquat Bot 65(1):293–309CrossRefGoogle Scholar
  50. Kendrick G, Hegge B, Wyllie A, Davidson A, Lord D (2000) Changes in seagrass cover on success and Parmelia Banks, Western Australia between 1965 and 1995. Estuar Coast Shelf Sci 50(3):341–353CrossRefGoogle Scholar
  51. Kendrick GA, Aylward MJ, Hegge BJ, Cambridge ML, Hillman K, Wyllie A, Lord DA (2002) Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquat Bot 73(1):75–87CrossRefGoogle Scholar
  52. Kendrick G, Harvey E, McDonald J, Pattiaratchi C, Cappo M, Fromont J, Shortis M, Grove S, Bickers A, Baxter K (2005) Characterising the fish habitats of the recherche archipelago. Fisheries Research and Development Corporation report project (2001/060)Google Scholar
  53. Keough M, Jenkins G (1995) Seagrass meadows and their inhabitants. Coastal Marine Ecology of Temperate, AustraliaGoogle Scholar
  54. Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109CrossRefPubMedGoogle Scholar
  55. Kirkman H (1997) Seagrasses of Australia, Australia: state of the environment technical paper series (estuaries and the sea). Environment AustraliaGoogle Scholar
  56. Kirkman H, Cook I (1987) Distribution and leaf growth of Thalassodendron pachyrhizum den Hartog in southern Western Australia. Aquat Bot 27(3):257–266CrossRefGoogle Scholar
  57. Kirkman H, Kendrick GA (1997) Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a review. J Appl Phycol 9(4):311–326CrossRefGoogle Scholar
  58. Kirkman H, Kuo J (1990) Pattern and process in southern Western Australian seagrasses. Aquat Bot 37(4):367–382CrossRefGoogle Scholar
  59. Kuo J (2005) A revision of the genus Heterozostera (Zosteraceae). Aquat Bot 81(2):97–140CrossRefGoogle Scholar
  60. Kuo J, Cambridge ML (1984) A taxonomic study of the Posidonia ostenfeldii complex (Posidoniaceae) with description of four new Australian seagrasses. Aquat Bot 20:267–295CrossRefGoogle Scholar
  61. Kuo J, Kirkman H (1987) Floral and seedling morphology and anatomy of Thalassodendron pachyrhizum den Hartog (Cymodoceaceae). Aquat Bot 29(1):1–17CrossRefGoogle Scholar
  62. Kuo J, Kirkman H (1995) Halophila decipiens ostenfeldii in estuaries of southwestern Australia. Aquat Bot 51(3–4):335–340CrossRefGoogle Scholar
  63. Larkum AW, McComb A, Shephard S (1989) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier Science PubGoogle Scholar
  64. Lavery PS, Mateo M-Á, Serrano O, Rozaimi M (2013) Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8(9):e73748CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350(1):144–175CrossRefGoogle Scholar
  66. Lincoln Proper–Boston Bay South Australia. Department for Environment Heritage and Aboriginal Affairs, AdelaideGoogle Scholar
  67. Madigan S, Venema S, Haskard K, Clarke S. (2000). Oyster Environmental Monitoring Program (OEMP): small-scale seagrass health study. SRDI (Aquatic Sciences), Adelaide Google Scholar
  68. Marbà N, Arias-Ortiz A, Masqué P, Kendrick GA, Mazarrasa I, Bastyan GR, Garcia-Orellana J, Duarte CM (2015) Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J Ecol 103(2):296–302CrossRefGoogle Scholar
  69. McGlathery KJ, Marino R, Howarth RW (1994) Variable rates of phosphate uptake by shallow marine carbonate sediments: mechanisms and ecological significance. Biogeochemistry 25:127–146CrossRefGoogle Scholar
  70. McKirdy DM, Thorpe CS, Haynes DE, Grice K, Krull ES, Halverson GP, Webster LJ (2010) The biogeochemical evolution of the Coorong during the mid- to late Holocene: an elemental, isotopic and biomarker perspective. Org Geochem 41(2):96–110CrossRefGoogle Scholar
  71. Middleton J, Doubell M, James C, Luick J, van Ruth P (2013) PIRSA initiative II: carrying capacity of spencer gulf: hydrodynamic and biogeochemical measurement modelling and performance monitoring: South Australian Research and Development Institute (SARDI), Final report for the Fisheries Research and Development Corporation, Publication no. South Australian Research and Development Institute (Aquatic Sciences), Adelaide, SA, p 97Google Scholar
  72. O’Connell LG, James NP, Doubell M, Middleton JF, Luick J, Currie DR, Bone Y (2016) Oceanographic controls on shallow-water temperate carbonate sedimentation: Spencer Gulf, South Australia. Sedimentology 63(1):105–135CrossRefGoogle Scholar
  73. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck JR, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrasses. Bioscience 56(12):897–996CrossRefGoogle Scholar
  74. Pattiaratchi CB, Wijeratne S, Roncevich L, Holder J (2015) Interaction between seagrass wrack and coastal structures: lessons from Port Geographe, South-Western Australia. In: Australasian coasts & ports conference 2015: 22nd Australasian coastal and ocean engineering conference and the 15th Australasian port and harbour conference. Engineers Australia and IPENZ, p 653Google Scholar
  75. Pearce A, Pattiaratchi C (1999) The capes current: a summer countercurrent flowing past Cape Leeuwin and Cape Naturaliste, Western Australia. Cont Shelf Res 19:401–420CrossRefGoogle Scholar
  76. Petrone KC, Hughes JD, Van Niel TG, Silberstein RP (2010) Streamflow decline in southwestern Australia, 1950–2008. Geophys Res Lett 37(11)Google Scholar
  77. Radford B, Van Niel K, Holmes K (2008) WA marine futures: benthic modelling and mapping final report. The University of Western AustraliaGoogle Scholar
  78. Ralph P, Durako MJ, Enriquez S, Collier C, Doblin M (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350(1):176–193CrossRefGoogle Scholar
  79. Reid N, Nunn P, Sharpe M (2014) Indigenous Australian stories and sea-level change. 18th conference of the foundation for endangered languages (fel): indigenous languages: value to the community. Okinawa, Japan, pp 17–20Google Scholar
  80. Richardson L, Mathews E, Heap A (2005) Geomorphology and sedimentology of the South Western Planning area of Australia. Geoscience Australia, Record, p 17Google Scholar
  81. Robertson F, Stasiuk G, Nannup N, Hopper SD (2016) Ngalak koora koora djinang (looking back together): a Nyoongar and scientific collaborative history of ancient Nyoongar boodja. Aust Aboriginal Stud 1:40Google Scholar
  82. Ruiz-Montoya L, Lowe R, Van Niel K, Kendrick G (2012) The role of hydrodynamics on seed dispersal in seagrasses. Limnol Oceanogr 57(5):1257CrossRefGoogle Scholar
  83. Ruiz-Montoya L, Lowe RJ, Kendrick GA (2015) Contemporary connectivity is sustained by wind-and current-driven seed dispersal among seagrass meadows. Mov Ecol 3(1):9CrossRefPubMedPubMedCentralGoogle Scholar
  84. Seddon S, Connolly R, Edyvane KS (2000) Large-scale seagrass dieback in northern Spencer Gulf, South Australia. Aquat Bot 66(4):297–310CrossRefGoogle Scholar
  85. Serrano O, Lavery PS, Rozaimi M, Mateo MÁ (2014) Influence of water depth on the carbon sequestration capacity of seagrasses. Global Biogeochem Cycles 28(9):950–961CrossRefGoogle Scholar
  86. Shepherd SA, Robertson EL (1989) Regional studies—seagrasses of South Australia, Victoria and Bass Strait. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. Elsevier Amsterdam, pp 211–229Google Scholar
  87. Shepherd S, Womersley H (1981) The algal and seagrass ecology of Waterloo Bay, South Australia. Aquat Bot 11:305–371CrossRefGoogle Scholar
  88. Short AD (2010) Sediment transport around Australia—sources, mechanisms, rates, and barrier forms. J Coastal Res 26(3):395–402CrossRefGoogle Scholar
  89. Silberstein RP, Aryal SK, Durrant J, Pearcey M, Braccia M, Charles SP, Boniecka L, Hodgson GA, Bari MA, Viney NR, McFarlane DJ (2012) Climate change and runoff in South-Western Australia. J Hydrol 475:441–455CrossRefGoogle Scholar
  90. Sinclair EA, Krauss SL, Anthony J, Hovey R, Kendrick GA (2014) The interaction of environment and genetic diversity within meadows of the seagrass Posidonia australis (Posidoniaceae). Mar Ecol Prog Ser 506:87–98CrossRefGoogle Scholar
  91. Sinclair EA, Statton J, Hovey R, Anthony JM, Dixon KW, Kendrick GA (2016) Reproduction at the extremes: pseudovivipary, hybridization and genetic mosaicism in Posidonia australis (Posidoniaceae). Ann Bot 117:237–247PubMedGoogle Scholar
  92. Tanner J (2005) Three decades of habitat change in Gulf St. Vincent, South Australia. Trans Roy Soc South Aust 129(1):65–73Google Scholar
  93. Tecchiato S, Collins L, Stevens A, Soldati M, Pevzner R (2016) Carbonate sediment dynamics and compartmentalisation of a highly modified coast: Geraldton, Western Australia. Geomorphology 254:57–72CrossRefGoogle Scholar
  94. Thomson JA, Burkholder DA, Heithaus MR, Fourqurean JW, Fraser MW, Statton J, Kendrick GA (2015) Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob Change Biol 21(4):1463–1474CrossRefGoogle Scholar
  95. Udy JW, Dennison W (1999) Seagrass and sediment nutrients: species comparison and fertilisation responses of P. australis at Rottnest Island, Western Australia. In: Walker DI, Wells FE (eds) Proceedings of the ninth international marine biological workshop—the seagrass flora and fauna of Rottnest Island, Western Australia. Western Australian Museum Western Australia, pp 73–87Google Scholar
  96. van Keulen M, Borowitzka MA (2002) Comparison of water velocity profiles through morphologically dissimilar seagrasses measured with a simple and inexpensive current meter. Bull Mar Sci 71(3):1257–1267Google Scholar
  97. Verduin JJ, Backhaus JO (2000) Dynamics of plant-flow interactions for the seagrass Amphibolis antarctica: field observations and model simulations. Estuar Coast Shelf Sci 50:185–204CrossRefGoogle Scholar
  98. Walker DI (1991) The effect of sea temperature on seagrasses and algae on the Western Australian coastline. J Roy Soc W Aust 74:71–77Google Scholar
  99. Walker D, Cambridge M (1995) An experimental assessment of the temperature responses of two sympatric seagrasses, Amphibolis antarctica and Amphibolis griffithii, in relation to their biogeography. Hydrobiologia 302(1):63–70CrossRefGoogle Scholar
  100. Walker D, McComb A (1988) Seasonal variation in the production, biomass and nutrient status of Amphibolis antarctica (Labill.) Sonder ex Aschers. and Posidonia australis hook. f. in Shark Bay, Western Australia. Aquat Bot 31(3–4):259–275CrossRefGoogle Scholar
  101. Walker D, Kendrick G, McComb A (1988) The distribution of seagrass species in Shark Bay, Western Australia, with notes on their ecology. Aquat Bot 30(4):305–317CrossRefGoogle Scholar
  102. Walker DI, Lukatelich RJ, Bastyan G, McComb AJ (1989) Effect of boat moorings on seagrass beds near Perth, Western Australia. Aquat Bot 36(1):69–77CrossRefGoogle Scholar
  103. Walker DI, Campey ML, Kendrick GA (2004) Nutrient dynamics in two seagrass species, Posidonia coriacea and Zostera tasmanica, on Success Bank, Western Australia. Estuar Coast Shelf Sci 60:251–260CrossRefGoogle Scholar
  104. Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3(1):78–82CrossRefGoogle Scholar
  105. Westphalen G, Collings G, Wear R, Fernandes M, Bryars S, Cheshire A (2004) A review of seagrass loss on the Adelaide metropolitan coastline. ACWS Technical Report No. 2 prepared for the Adelaide Coastal Waters Study Steering Committee. South Australian Research and Development Institute (Aquatic Sciences), AdelaideGoogle Scholar
  106. Whipp R (2010) Decline of Ruppia species in the Coorong lagoons, SA. Open Atmos Sci J 2:217–231Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kieryn Kilminster
    • 1
    • 2
  • Renae Hovey
    • 3
  • Michelle Waycott
    • 4
    • 5
  • Gary A. Kendrick
    • 3
  1. 1.Department of Water and Environmental RegulationGovernment of Western AustraliaPerthAustralia
  2. 2.School of Biological SciencesThe University of Western AustraliaCrawleyAustralia
  3. 3.School of Biological Sciences and the Oceans InstituteThe University of Western AustraliaCrawleyAustralia
  4. 4.School of Biological SciencesUniversity of AdelaideAdelaideAustralia
  5. 5.Department of Environment, Water and Natural ResourcesState Herbarium of South AustraliaAdelaideAustralia

Personalised recommendations