Advertisement

The Microbiology of Seagrasses

  • J. R. Seymour
  • B. Laverock
  • D. A. Nielsen
  • S. M. Trevathan-Tackett
  • P. I. Macreadie
Chapter

Abstract

Like both terrestrial plants and other benthic marine organisms, seagrasses host abundant and diverse communities of microorganisms. These microbes fundamentally influence seagrass physiology and health, while also regulating the biogeochemical dynamics of entire seagrass meadows. Discrete populations of bacteria, fungi, microalgae, archaea and viruses inhabit seagrass leaves, roots and rhizomes and the surrounding sediments. The plethora of ecological interactions taking place between seagrasses and this microbiome span the continuum of symbiotic relationships from mutualism to parasitism. Indeed, the metabolic activities of some seagrass associated microbes, such as diazotrophic and sulphur oxidizing bacteria, govern the local chemical environment in ways that facilitate seagrass survival. On the other hand, pathogens, such as the protozoan parasite Labyrinthula cause disease outbreaks that can lead to mass seagrass die offs. While the role of the seagrass microbiome in defining the success of seagrass habitats is becoming increasingly apparent, there is still much to be learnt. For instance, the development of an understanding of how seagrass associated microbes may buffer or augment the negative impacts of growing environmental pressures will be valuable for informing decisions regarding the management and conservation of threatened seagrass habitats. In this chapter we will synthesise the current state of knowledge on the microbiology of seagrasses, with a goal of conveying the often overlooked importance of the seagrass microbiome in governing seagrass health and the biogeochemical stability of seagrass ecosystems.

References

  1. Afiyatullov SS, Leshchenko E, Sobolevskaya M, Gerasimenko A, Khudyakova YV, Kirichuk N, Mikhailov V (2015) New 3-[2′(R)-Hydroxybutyl]-7-Hydroxyphthalide from marine isolate of the fungus Penicillium claviforme. Chem Nat Compd 51:111–115CrossRefGoogle Scholar
  2. Ainsworth T, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M et al (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J 9:2261–2274CrossRefGoogle Scholar
  3. Aladro-Lubel MA, Martinez-Murillo ME (1999) Epibiotic protozoa (ciliophora) on a community of Thalassia testudinum banks ex Konig in a coral reef in Veracruz, Mexico. Aquat Bot 65:239–254CrossRefGoogle Scholar
  4. Amaral-Zettler L, Artigas L F, Baross J, Bharathi PA, Boetius L, Chandramohan D, Herndl G, Kogure K, Neal P, Pedrós-Alió C, Ramette A, Schouten S, Stal L, Thessen A, Leeuw J D, Sogin M (2010) , In: McIntyre AD (ed) A global census of marine microbes, in life in the world’s oceans: diversity, distribution, and abundance. Wiley-Blackwell, Oxford, UK.  https://doi.org/10.1002/9781444325508.ch12
  5. Armiger LC (1964) An occurrence of Labyrinthula in New Zealand Zostera. NZ J Bot 2:3–9CrossRefGoogle Scholar
  6. Arnold TM, Tanner CE, Rothen M, Bullington J (2008) Wound-induced accumulations of condensed tannins in turtlegrass, Thalassia testudinum. Aquat Bot 89:27–33CrossRefGoogle Scholar
  7. Arnosti C (2011) Microbial extracellular enzymes and the marine carbon cycle. Annual Review of Marine Science 3:401–425PubMedCrossRefGoogle Scholar
  8. Arunpanichlert J, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Supaphon O, Sakayaroj J (2011) A β-Resorcylic macrolide from the seagrass-derived fungus Fusarium sp. PSU-ES73. Arch Pharmacal Res 34:1633–1637CrossRefGoogle Scholar
  9. Arunpanichlert J, Rukachaisirikul V, Tadpetch K, Phongpaichit S, Hutadilok-Towatana N, Supaphon O, Sakayaroj J (2012) A dimeric chromanone and a phthalide: metabolites from the seagrass-derived fungus Bipolaris sp. PSU-ES64. Phytochem Lett 5:604–608CrossRefGoogle Scholar
  10. Arunpanichlert J, Rukachaisirikul V, Phongpaichit S, Supaphon O, Sakayaroj J (2015a) Meroterpenoid, isocoumarin, and phenol derivatives from the seagrass-derived fungus Pestalotiopsis sp. PSU-ES194. Tetrahedron 71:882–888CrossRefGoogle Scholar
  11. Arunpanichlert J, Rukachaisirikul V, Phongpaichit S, Supaphon O, Sakayaroj J (2015b) Xylariphilone: a new azaphilone derivative from the seagrass-derived fungus Xylariales sp. PSU-ES163. Nat Prod Res (ahead-of-print):1–6Google Scholar
  12. Atwood TB, Connolly RM, Ritchie EG, Lovelock CE, Heithaus MR, Hays CG, Fourqurean JW, Macreadie PI (2015) Predators help protect carbon stocks in blue carbon ecosystems. Nat Clim Change 5:1038–1045CrossRefGoogle Scholar
  13. Baker-Austin C, Trinanes JA, Taylor NGH, Hartnell R, Siitonen A, Martinez-Urtaza J (2013) Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Change 3:73–77.  https://doi.org/10.1038/nclimate1628CrossRefGoogle Scholar
  14. Barnabas AD (1992) Bacteria on and within leaf blade epidermal cells of the seagrass Thalassodendron ciliatum (Forssk.) Den Hartog. Aquat Bot 43:257–266CrossRefGoogle Scholar
  15. Barron C, Middelburg JJ, Duarte CM (2006) Phytoplankton trapped within seagrass (Posidonia oceanica) sediments are a nitrogen source: an in situ isotope labeling experiment. Limnol Oceanogr 51:1648–1653CrossRefGoogle Scholar
  16. Belofsky GN, Jensen PR, Fenical W (1999) Sansalvamide: a new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett 40:2913–2916CrossRefGoogle Scholar
  17. Ben-Haim Y, Rosenberg E (2002) A novel Vibrio sp pathogen of the coral Pocillopora damicornis. Mar Biol 141:47–55CrossRefGoogle Scholar
  18. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148.  https://doi.org/10.3389/fmicb.2014.00148CrossRefPubMedPubMedCentralGoogle Scholar
  19. Blaabjerg V, Finster K (1998) Sulphate reduction associated with roots and rhizomes of the marine macrophytes Zostera marina. Aquat Microb Ecol 15:311–314CrossRefGoogle Scholar
  20. Blaabjerg V, Mouritsen KN, Finster K (1998) Diel cycles of sulphate reduction rates in sediments of a Zostera marina bed (Denmark). Aquat Microb Ecol 15:97–102.  https://doi.org/10.3354/ame015097CrossRefGoogle Scholar
  21. Blackburn TH, Nedwell DB, Wiebe WJ (1994) Active mineral cycling in a Jamaican seagrass sediment. Mar Ecol Prog Ser 110:233–239.  https://doi.org/10.3354/meps110233CrossRefGoogle Scholar
  22. Blum LK, Mills AL (1991) Microbial growth and activity during the initial stages of seagrass decomposition. Mar Ecol Prog Ser 70:73–82.  https://doi.org/10.3354/meps070073CrossRefGoogle Scholar
  23. Bockelmann AC, Tams V, Ploog J, Schubert PR, Reusch TB (2013) Quantitative PCR reveals strong spatial and temporal variation of the wasting disease pathogen, Labyrinthula zosterae in northern European eelgrass (Zostera marina) beds. PLOS One 8:e62169Google Scholar
  24. Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207CrossRefGoogle Scholar
  25. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48PubMedCrossRefGoogle Scholar
  26. Bongiorni L, Pusceddu A, Danovaro R (2005) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305CrossRefGoogle Scholar
  27. Borum J, Pedersen O, Greve TM, Frankovich TA, Zieman JC, Fourqurean JW, Madden CJ (2005) The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. J Ecol 93:148–158CrossRefGoogle Scholar
  28. Boschker HTS, Wielemaker A, Schaub BEM, Holmer M (2000) Limited coupling of macrophyte production and bacterial carbon cycling in the sediments of Zostera spp. meadows. Mar Ecol Prog Ser 203:181–189CrossRefGoogle Scholar
  29. Brakel J, Werner FJ, Tams V, Reusch TB, Bockelmann A-C (2014) Current European Labyrinthula zosterae are not virulent and modulate seagrass (Zostera marina) defense gene expression. PLoS ONE 9:e92448PubMedPubMedCentralCrossRefGoogle Scholar
  30. Brearley A, Walker D (1995) Isopod miners in the leaves of two Western Australian Posidonia species. Aquat Bot 52:163–181CrossRefGoogle Scholar
  31. Brodersen KE, Nielsen DA, Ralph PJ, Kuhl M (2015) Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide. New Phytol 205:1264–1276.  https://doi.org/10.1111/nph.13124CrossRefPubMedGoogle Scholar
  32. Brown AC, McLachlan A (2010) The ecology of sandy shores. Elsevier Science, AmsterdamGoogle Scholar
  33. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789CrossRefGoogle Scholar
  34. Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485PubMedCrossRefGoogle Scholar
  35. Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL, Ford SE, Harvell CD (2014) Climate change influences on marine infectious diseases: implications for management and society. In: Carlson CA, Giovannoni SJ (eds) Annual review of marine science, vol 6, pp 249–277.  https://doi.org/10.1146/annurev-marine-010213-135029
  36. Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72CrossRefGoogle Scholar
  37. Burreson EM, Stokes NA, Friedman CS (2000) Increased virulence in an introduced pathogen: Haplosporidium nelsoni (MSX) in the eastern oyster Crassostrea virginica. J Aquatic Animal Health 12:1–8. https://doi.org/10.1577/1548-8667(2000)012<0001:iviaip>2.0.co;2
  38. Bushmann P, Ailstock S (2006) Antibacterial compounds in estuarine submersed aquatic plants. J Exp Mar Biol Ecol 331:41–50CrossRefGoogle Scholar
  39. Calleja ML, Marbà N, Duarte CM (2007) The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuar Coast Shelf Sci 73:583–588CrossRefGoogle Scholar
  40. Canfield DE (1989) Sufate reduction and oxic respiration in marine-sediments—implications for organic-carbon preservation in euxinic environments. Deep-Sea Res Art A-Oceanogr Res Papers 36:121–138. https://doi.org/10.1016/0198-0149(89)90022-8CrossRefGoogle Scholar
  41. Canfield D (1993) Organic matter oxidation in marine sediments. In: Wollast R, Mackenzie F, Chou L (eds) Interactions of C, N, P and S biogeochemical cycles and global change, vol 4. NATO ASI Series. Springer, Berlin, pp 333–363.  https://doi.org/10.1007/978-3-642-76064-8_14
  42. Canfield D, Thamdrup B, Kristensen E (2005) Aquatic geomicrobiology, vol 48. Elsevier Academic Press, LondonGoogle Scholar
  43. Capone D, Taylor BF (1977) Nitrogen fixation (acetylene reduction) in the phyllosphere of Thalassia testudinum. Mar Biol 40:19–28CrossRefGoogle Scholar
  44. Capone DG, Taylor BF (1980) Microbial nitrogen cycling in a seagrass community. Estuar Perspect Acad 153–161Google Scholar
  45. Capone DG (1982) Nitrogen fixation (acetylene reduction) by rhizosphere sediments of the eelgrass Zostera Marina. Mar Ecol Prog Ser 10:67–75CrossRefGoogle Scholar
  46. Capone DG (1983) Benthic nitrogen fixation. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, pp 105–137CrossRefGoogle Scholar
  47. Capone DG, Kiene RP (1988) Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon metabolism. Limnol Oceanogr 33:725–749Google Scholar
  48. Cariello L, Zanetti L, De Stefano S (1979) Phenolic compounds from marine phanerogames, Cymodocea nodosa and Posidonia oceanica. Comparitive Biochem Physiol 62B:159–161Google Scholar
  49. Carlson PR, Forrest J (1982) Uptake of dissolved sulfide by Spartina alterniflora: evidence from natural sulfur isotope abundance ratios. Science 216:633–635PubMedCrossRefGoogle Scholar
  50. Carlson PR, Yarbro LA, Barber TR (1994) Relationship of sediment sulphide to mortality of Thalassia testudinum in Florida Bay. Bull Mar Sci 54:733–746Google Scholar
  51. Cavanaugh CM (1983) Symbiotic Chemoautotrophic bacteria in marine-invertebrates from sulfide-rich habitats. Nature 302:58–61.  https://doi.org/10.1038/302058a0CrossRefGoogle Scholar
  52. Cebrián J, Duarte CM, Marbà N, Enríquez S (1997) Magnitude and fate of the production of four co-occurring Western Mediterranean seagrass species. Mar Ecol Prog Ser 155:29–44CrossRefGoogle Scholar
  53. Celdran D, Espinosa E, Sanchez-Amat A, Marín A (2012) Effects of epibiotic bacteria on leaf growth and epiphytes of the seagrass Posidonia oceanica. Mar Ecol Prog Ser 456:21–27CrossRefGoogle Scholar
  54. Chisholm ST, Coaker G, Day B, Staskwicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814PubMedCrossRefGoogle Scholar
  55. Chung MH, Lee K-S (2008) Species composition of the epiphytic diatoms on the leaf tissues of three Zostera species distributed on the southern coast of Korea. Algae 23:75–81CrossRefGoogle Scholar
  56. Cifuentes A, Anton J, Benlloch S, Donnelly A, Herbert RA, Rodriguez-Valera F (2000) Prokaryotic diversity in Zostera noltii—colonized marine sediments. Appl Environ Microbiol 66:1715–1719PubMedPubMedCentralCrossRefGoogle Scholar
  57. Cock JM, Sterck L, Rouze P et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621PubMedCrossRefGoogle Scholar
  58. Cole LW, McGlathery KJ (2011) Nitrogen fixation in restored eelgrass meadows. Mar Ecol Prog Ser 448:235–246CrossRefGoogle Scholar
  59. Crump BC, Koch EW (2008) Attached bacterial populations shared by four species of aquatic angiosperms. Appl Environ Microbiol 74:5948–5957PubMedPubMedCentralCrossRefGoogle Scholar
  60. Cuomo V, Pagano S, Pecorella MA, Parascandola P (1987) Evidence of the active role of ligno-cellulosic enzymes of marine fungi in degradation of Posidonia oceanica leaves. Biochem Syst Ecol 15:635–637.  https://doi.org/10.1016/0305-1978(87)90035-4CrossRefGoogle Scholar
  61. Daehnick AE, Sullivan MJ, Moncreiff CA (1992) Primary production of the sand microflora in seagrass beds of Mississippi Sound. Bot Mar 35:131–139CrossRefGoogle Scholar
  62. Danovaro R, Fabiano M (1995) Seasonal and inter-annual variation of bacteria in a seagrass bed of the Mediterranean Sea: relationship with labile organic compounds and other environmental factors. Aquat Microb Ecol 9:17–26CrossRefGoogle Scholar
  63. Das S, Mangwani N (2015) Ocean acidification and marine microorganisms: responses and consequences. Oceanologia 57:349–361.  https://doi.org/10.1016/j.oceano.2015.07.003CrossRefGoogle Scholar
  64. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689PubMedCrossRefGoogle Scholar
  65. DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342PubMedCrossRefGoogle Scholar
  66. DeLong EF et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503PubMedCrossRefGoogle Scholar
  67. Devarajan PT, Suryanarayanan TS, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Indian J Mar Sci 31:73–74Google Scholar
  68. Devereux R (2005) Seagrass rhizosphere microbial communities. In coastal and estuarine studies: interactions between macro and microorganisms in marine sediments. Kristensen E, Haese RR, Kostka JE (eds) American Geophysical Union, pp 199–216. 1029/2010GB003848Google Scholar
  69. Donnelly AP, Herbert RA (1998) Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons. J Appl Microbiol 85(1):151S–160S.  https://doi.org/10.1111/j.1365-2672.1998.tb05294.xCrossRefPubMedGoogle Scholar
  70. Duarte CM (2002) The future of seagrass meadows. Environ Conserv 29:192–206CrossRefGoogle Scholar
  71. Duarte CM, Holmer M, Marba N (2005) Plant-microbe interactions in seagrass meadows. In: Kristensen E, Haese R, Kostka J (eds) Interactions between macro- and microorganisms in marine sediments. American Geophysical Union, Washington, DC, pp P31–P60CrossRefGoogle Scholar
  72. Duarte CM, Merino M, Agawin NSR, Uri J, Fortes MD, Gallegos ME, Marbá N, Hemminga MA (1998) Root production and belowground seagrass biomass. Mar Ecol Prog Ser 171:97–108CrossRefGoogle Scholar
  73. Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T (2013) The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev 37:462–476PubMedCrossRefGoogle Scholar
  74. Eloe-Fadrosh EA, Rasko DA (2013) The human microbiome: from symbiosis to pathogenesis. Annu Rev Med 64:145–163PubMedPubMedCentralCrossRefGoogle Scholar
  75. Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985PubMedCrossRefGoogle Scholar
  76. Engel S, Puglisi MP, Jensen PR, Fenical W (2006) Antimicrobial activities of extracts from tropical Atlantic marine plants against marine pathogens and sprophytes. Mar Biol 149:991–1002CrossRefGoogle Scholar
  77. Evrard V, Kiswara W, Bouma TJ, Middelburg JJ (2005) Nutrient dynamics of seagrass ecosystems: 15N evidence for the importance of particulate organic matter and root systems. Mar Ecol Prog Ser 295:49–55CrossRefGoogle Scholar
  78. Eyre BD, Ferguson AJP (2002) Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate Australian lagoons. Mar Ecol Prog Ser 229:43–59CrossRefGoogle Scholar
  79. Eyre BD, Ferguson AJP, Webb A, Maher DT, Oakes JM (2011) Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry 102:111–133CrossRefGoogle Scholar
  80. Falkowski PD, Fenchel T, DeLong EF (2008) The microbial engines that drive biogeochemical cycles. Science 320:1034–1038PubMedCrossRefGoogle Scholar
  81. Fegan M, Hayward C (2004) Genetic diversity of bacterial plant pathogens. In: Gillings M, Holmes A (eds) Plant microbiology, pp 17–193. Taylor and FrancisGoogle Scholar
  82. Fenchel T, King GM. Blackburn TH (2012) Bacterial biogeochemistry: the ecophysiology of mineral cycling, 3rd edn. ElsevierGoogle Scholar
  83. Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509CrossRefGoogle Scholar
  84. Frankovich TA, Zieman JC (1994) Total epiphyte and epiphytic carbonate production on Thalassia testudinum across Florida bay. Bull Mar Sci 54:679–695Google Scholar
  85. Fuhrman JA, Ouverney CC (1998) Marine microbial diversity studied via 16S rRNA sequences: cloning results from coastal waters and counting native archaeawith fluorescent single cell probes. Aquat Ecol 32:3–15CrossRefGoogle Scholar
  86. Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149PubMedCrossRefGoogle Scholar
  87. García R, Holmer M, Duarte CM, Marbà N (2013) Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean). Glob Change Biol 19:3629–3639CrossRefGoogle Scholar
  88. Garcias-Bonet N, Arrieta JM, de Santana CN, Duarte CM, Marbà N (2012) Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Front Microbiol 342:1–16Google Scholar
  89. Garcias-Bonet N, Sherman TD, Duarte CM, Marbà N (2011) Distribution and pathogenicity of the protist Labyrinthula sp. in western Mediterranean seagrass meadows. Estuar Coasts 34:1161–1168CrossRefGoogle Scholar
  90. Gianinazzi –Pearson V (1996) Plant cell responses to arbruscula mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883PubMedPubMedCentralCrossRefGoogle Scholar
  91. Gillings M, Holmes A (2004) Plant microbiology. Taylor and FrancisGoogle Scholar
  92. Glud RN, Middelboe M (2004) Virus and bacteria dynamics of acoastal sediment: implications for benthic carbon cycling. Limnol Oceanogr 49:2073–2081CrossRefGoogle Scholar
  93. Goering JJ, Parker PI (1972) Nitrogen fixation by epiphytes on sea grasses. Limnol Oceanogr 17:320–323CrossRefGoogle Scholar
  94. Grantina-levina L, Kasparinskis R, Tabors G, Nikolajeva (2013) Features of saprophytic soil microorganism communities in conifer stands with or without heterobasidion annosum sensu lato infection: a special emphasis on Penicillium spp. Environ Experimental Biol 11:23–38Google Scholar
  95. Greve TM, Borum J, Pedersen O (2003) Meristematic oxygen variability in eelgrass (Zostera marina). Limnol Oceanogr 48:210–216CrossRefGoogle Scholar
  96. Guidi L et al (2016) Plankton networks driving carbon export in the oligotrophic ocean. Nature  https://doi.org/10.1038/nature16942
  97. Hamisi MI, Lyimo TJ, Muruke HS (2004) Cyanobacterial occurrence and diversity in seagrass meadows in Coastal Tanzania. Western Indian Ocean. J Mar Sci 3:113–122Google Scholar
  98. Hansen JW, Udy JW, DennisonWCand Lomstein BA (2000) Effect of the seagrass Zostera capricorni on sediment microbial processes. Mar Ecol Prog Ser 199:83–96CrossRefGoogle Scholar
  99. Harlin MM (1975) Epiphyte—host relationships in seagrass communities. Aquat Bot 1:125–131CrossRefGoogle Scholar
  100. Harrison PG (1982a) Control of microbial growth and of amphipod grazing by water-soluble compounds from leaves of Zostera marina. Mar Biol 67:225–230.  https://doi.org/10.1007/bf00401288CrossRefGoogle Scholar
  101. Harrison PG (1982b) Control of microbial growth on eelgrass (Zostera marina L.: Spermatophyta) by leaf-derived metabolites. Hydrobiol Bull 16:115CrossRefGoogle Scholar
  102. Harvell C, Kim K, Burkholder J, Colwell R, Epstein PR, Grimes D, Hofmann E, Lipp E, Osterhaus A, Overstreet RM (1999) Emerging marine diseases–climate links and anthropogenic factors. Science 285:1505–1510PubMedCrossRefGoogle Scholar
  103. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162PubMedCrossRefGoogle Scholar
  104. Hassenrück C, Hofmann LC, Bischof K, Ramette A (2015) Seagrass biofilm communities at a naturally CO2-rich vent. Environ Microb Rep 7:516–525CrossRefGoogle Scholar
  105. Hemminga MA (1998) The root/rhizome system of seagrasses: an asset and a burden. J Sea Res 39:183–196CrossRefGoogle Scholar
  106. Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University PressGoogle Scholar
  107. Hendriks IE, Olsen YS, Ramajo L, Basso L, Steckbauer A, Moore TS, Howard J, Duarte CM (2014) Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11:333–346.  https://doi.org/10.5194/bg-11-333-2014CrossRefGoogle Scholar
  108. Hendriks IE, Sintes T, Bouma TJ, Duarte CM (2008) Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar Ecol Prog Ser 356:163–173.  https://doi.org/10.3354/meps07316CrossRefGoogle Scholar
  109. Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590PubMedCrossRefGoogle Scholar
  110. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528PubMedCrossRefGoogle Scholar
  111. Holmer M, Laursen L (2002) Effect of shading of Zostera marina (eelgrass) on sulfur cycling in sediments with contrasting organic matter and sulfide pools. J Exp Mar Biol Ecol 270:25–37CrossRefGoogle Scholar
  112. Holmer M, Andersen FO, Nielsen SL, Boschker HTS (2001) The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. Aquat Bot 71:1–17CrossRefGoogle Scholar
  113. Holmer M, Duarte CM, Marba N (2003) Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66:223–239CrossRefGoogle Scholar
  114. Holmer M, Hasler-Sheetal H (2014) Sulfide intrusion in seagrasses assessed by stable sulphur isotopes—a synthesis of current results. Front Mar Sci. http://dx.doi.org/10.3389/fmars.2014.00064
  115. Holmer M, Nielsen SL (1997) Sediment sulfur dynamics related to biomass-density patterns in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 146:163–171CrossRefGoogle Scholar
  116. Hough RA, Wetzel RG (1975) The release of dissolved organic carbon from submersed aquatic macrophytes: Diel, seasonal and community relationships. Verhandlungen Internationale Vereinigung Limnologie 19:939–948Google Scholar
  117. Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving vies over three decades. Limnol Oceanogr 51:364–376CrossRefGoogle Scholar
  118. Huesemann MH, Skillman AD, Crecelius EA (2002) The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar Pollut Bull 44:142–148PubMedCrossRefGoogle Scholar
  119. Huettel M, Webster IT (2001) Porewater flow in permeable sediments. In: Boudreau BP, Jørgensen BB (eds) The benthic boundary layer: transport processes and biogeochemistry, 1st edn. Oxford University Press, USA, pp 144–179Google Scholar
  120. Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161CrossRefGoogle Scholar
  121. IPCC (2014) Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Climate change 2014: impacts, adaptation, and vulnerability. Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  122. Isaksen MF, Finster K (1996) Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar Ecol Prog Ser 137:187–194CrossRefGoogle Scholar
  123. Ivanova EP, Gorshkova NM, Sawabe T, Zhukova NV, Hayashi K, Kurilenko VV, Alexeeva Y, Buljan V, Nicolau DV, Mikhailov VV, Christen R (2004) Sulfitobacterdelicatus sp. nov. and Sulfitobacterdubius sp. nov., respectively from a starfish (Stellasterequestris) and seagrass (Zosteramarina). Int J Syst Evol Microbiol 54:475–480PubMedCrossRefGoogle Scholar
  124. Jacobs RPWM, Noten TMPA (1980) The annual pattern of the diatoms in the epiphyton of eelgrass (Zostera marina L.) at Roscoff, France. Aquat Bot 8:355–370CrossRefGoogle Scholar
  125. Jensen PR, Jenkins KM, Porter D, Fenical W (1998) Evidence that a new antibiotic flavone glycoside chemically defends the sea grass Thalassia testudinum against zoosporic fungi. Appl Environ Microbiol 64:1490–1496PubMedPubMedCentralGoogle Scholar
  126. Jensen SI, Kuhl M, Glud RN, Jorgensen LB, Prieme A (2005) Oxic microzones and radial oxygen loss from roots of Zostera marina. Mar Ecol Prog Ser 293:49–58.  https://doi.org/10.3354/meps293049CrossRefGoogle Scholar
  127. Jensen SI, Kühl M, Priemé A (2007) Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina. FEMS Microbiol Ecol 62:108–117PubMedCrossRefGoogle Scholar
  128. Joint I, Doney SC, Karl DM (2011) Will ocean acidification affect marine microbes? The ISME J 5:1–7PubMedCrossRefGoogle Scholar
  129. Jørgensen BB (1982) Mineralization of organic-matter in the sea bed—the role of sulfate reduction. Nature 296:643–645.  https://doi.org/10.1038/296643a0CrossRefGoogle Scholar
  130. Josselyn M, Fonseca M, Niesen T, Larson R (1986) Biomass, production and decomposition of a deep water seagrass, Halophila decipiens Ostenf. Aquat Bot 25:47–61CrossRefGoogle Scholar
  131. Joye SB, Hollibaugh JT (1995) Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270:623–625CrossRefGoogle Scholar
  132. Jurgens K, Massana R (2008) Protistan grazing on marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Blackwell, New JerseyGoogle Scholar
  133. Kaldy JE, Eldridge PM, Cifuentes LA, Jones WB (2006) Utilization of DOC from seagrass rhizomes by sediment bacteria: 13C-tracer experiments and modeling. Mar Ecol Prog Ser 317:41–55CrossRefGoogle Scholar
  134. Kasai Y, Komatsu K, Shigemori H, Tsuda M, Mikami Y, Ji Kobayashi (2005) Cladionol A, a polyketide glycoside from marine-derived fungus Gliocladium species. J Nat Prod 68:777–779PubMedCrossRefGoogle Scholar
  135. Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbà N, Middelburg JJ (2010) Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochem Cycles 24:GB4026CrossRefGoogle Scholar
  136. Kilminster KL, Walker DI, Thompson PA, Raven JA (2006) Limited nutritional benefit to the seagrass Halophila ovalis, in culture, following sediment organic matter enrichment. Estuar Coastal Shelf Sci 68:675–685CrossRefGoogle Scholar
  137. Kirchman DL, Mazzella L, Alberte RS, Mitchell R (1984) Epiphytic bacterial production on Zostera marina. Marine Ecology Progress SeriesGoogle Scholar
  138. Kitidis V, Laverock B, McNeil CL, Beesley A, Cummings D, Tait K, Osborn M, Widdicombe S (2011) Impact of ocean acidification on benthic and water column ammonia oxidation. Geophys Res Lett 38:L21603CrossRefGoogle Scholar
  139. Koch MS, Schopmeyer SA, Holmer M, Madden CJ, Kyhn-Hansen C (2007a) Thalassia testudinum response to the interactive stressors hypersalinity, sulfide and hypoxia. Aquat Bot 87:104–110CrossRefGoogle Scholar
  140. Koch MS, Schopmeyer SA, Nielsen OI, Kyhn-Hansen C, Madden CJ (2007b) Conceptual model of seagrass die-off in Florida Bay: links to biogeochemical processes. J Exp Mar Biol Ecol 350:73–88.  https://doi.org/10.1016/j.jembe.2007.05.031CrossRefGoogle Scholar
  141. Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302.  https://doi.org/10.3354/meps09506CrossRefGoogle Scholar
  142. Kuo J (1978) Morphology, anatomy and histochemistry of the Australian seagrasses of the genus Posidonia könig (Posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis Hook. F Aquatic Botany 5:171–190CrossRefGoogle Scholar
  143. Kuo J (1993) Root anatomy and rhizospheres ultrastructure in tropical seagrasses. Mar Freshw Res 44:75–84Google Scholar
  144. Kuo J, McComb AJ, Cambridge ML (1981) Ultrastructure of the seagrass rhizosphere. New Phytol 89:139–143CrossRefGoogle Scholar
  145. Kurilenko V, Ivanova E, Mikhailov V (2001) Zonal distribution of epiphytic microorganisms on the eelgrass Zostera marina. Microbiology 70:372–373CrossRefGoogle Scholar
  146. Küsel K, Karnholz A, Trinkwalter T, Devereux R, Acker G, Drake HL (2001) Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Appl Environ Microbiol 67:4734–4741PubMedPubMedCentralCrossRefGoogle Scholar
  147. Küsel K, Pinkart HC, Drake HL, Devereux R (1999) Acetogenic and sulfate-reducing bacteria inhabiting ther hizoplane and deep cortex cells of the seagrass Halodule wrightii. Appl Environ Microbiol 65:5117–5123PubMedPubMedCentralGoogle Scholar
  148. Lamers LPM, Govers LL, Janssen ICJM, Geurts JJM, Van der Welle MEW, Van Katwijk MM, Van der Heide T, Roelofs JGM, Smolders AJP (2013) Sulfide as a soil phytotoxin-a review. Front Plant Sci 4.  https://doi.org/10.3389/fpls.2013.00268
  149. Lane AL, Kubanek J (2008) Secondary metabolite defenses against pathogens and biofoulers. In: Amslet CD (ed) Algal chemical ecology. Springer, Berlin, pp 229–243Google Scholar
  150. Laverock B, Kitidis V, Tait K, Gilbert JA, Osborn AM, Widdicombe S (2013) Bioturbation determines the response of benthic ammonia oxidising microorganisms to ocean acidification. Philos Transa R Soc B 368:20120441CrossRefGoogle Scholar
  151. Lavery PS, Mateo M-A, Serrano O, Rozaimi M (2013) Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 8(9).  https://doi.org/10.1371/journal.pone.0073748
  152. Leander CA, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93:459–464CrossRefGoogle Scholar
  153. Lee KS, Dunton KH (2000) Diurnal changes in pore water sulfide concentrations in the seagrass Thalassia testudinum beds: the effects of seagrasses on sulfide dynamics. J Exp Mar Biol Ecol 255:201–214.  https://doi.org/10.1016/s0022-0981(00)00300-2CrossRefPubMedGoogle Scholar
  154. Lepoint G, Jacquemart J, Bouquegneau JM, Demoulin V, Gobert S (2007) Field measurements of inorganic nitrogen uptake by epiflora components of the seagrass Posidonia oceanica (Monocotyledons, Posidoniaceae). J Phycol 4:208–218CrossRefGoogle Scholar
  155. Lesser MP, Fiore C, Slattery M, Zaneveld J (2016) Climate change stressors destabilize the microbiome of the Caribbean barrel sponge, Xestospongia muta. J Exp Mar Biol Ecol 475:11–18.  https://doi.org/10.1016/j.jembe.2015.11.004CrossRefGoogle Scholar
  156. Ling J, Zhang Y, Wu M, Wang Y, Dong J, Jiang Y, Yang Q, Zeng S (2015) Fungal community successions in rhizosphere sediment of seagrasses Enhalus acoroides under PAHs stress. Int J Mol Sci 16:14039–14055PubMedPubMedCentralCrossRefGoogle Scholar
  157. Liu J, Weinbauer MG, Maier C, Dai M, Gattuso J-P (2010) Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquat Microb Ecol 61:291–305CrossRefGoogle Scholar
  158. Lloyd KG et al (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496:215–218PubMedCrossRefGoogle Scholar
  159. Lobelle D, Kenyon EJ, Cook KJ, Bull JC (2013) Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics. PLoS ONE 8(2):e57072PubMedPubMedCentralCrossRefGoogle Scholar
  160. Long MH, McGlathery KJ, Zieman JC, Berg P (2008) The role of organic acid exudates in liberating phosphorus from seagrass-vegetated carbonate sediments. Limnol Oceanogr 53(6):2616–2626.  https://doi.org/10.4319/lo.2008.53.6.2616CrossRefGoogle Scholar
  161. López NI, Duarte CM, Vallespinós F, Romero J, Alcoverro T (1995) Bacterial activity in seagrass (Posidonia oceanica) sediments. J Experimental Biol Ecol 187:39–49CrossRefGoogle Scholar
  162. Lopez-Urrutia A, Moran XAG (2007) Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88:817–822.  https://doi.org/10.1890/06-1641CrossRefPubMedGoogle Scholar
  163. Luna GM, Corinaldesi C, Dell’Anno A, Pusceddu A, Danovaro R (2013) Impact of aquaculture on benthic virus-prokaryote interactions in the Mediterranean Sea. Water Res 47:1156–1168PubMedCrossRefGoogle Scholar
  164. Lyimo T, Hamisi M (2008) Cyanobacteria occurrence and nitrogen fixation rates in the seagrass meadows of the east coast of Zanzibar: comparisons of sites with and without seaweed farms. West Indian Ocean J Mar Sci 7:45–55Google Scholar
  165. Macreadie PI, Baird ME, Trevathan-Tackett SM, Larkum AWD, Ralph PJ (2014a) Quantifying and modelling the carbon sequestration capacity of seagrass meadows—a critical assessment. Mar Pollut Bull 83:430–439PubMedCrossRefGoogle Scholar
  166. Macreadie PI, York PH, Sherman CDH (2014b) Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery. Ecol Evol 4:450–461PubMedPubMedCentralCrossRefGoogle Scholar
  167. Macreadie PI, Trevathan-Tackett SM, Skilbeck CG, Sanderman J, Curlevski N, Jacobsen G, Seymour JR (2015) Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. In: Proceedings of the Royal Society B-Biological Sciences. In press (282)Google Scholar
  168. Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84.  https://doi.org/10.1023/a:1017520800568CrossRefGoogle Scholar
  169. Maie N, Jaffé R, Miyoshi T, Childers DL (2006) Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 78:285–314CrossRefGoogle Scholar
  170. Mann KH (1998) Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol Oceanogr 33:910–930Google Scholar
  171. Marba N, Holmer M, Gacia E, Barron C (2006) Seagrass beds and coastal biogeochemistry, In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 135–157Google Scholar
  172. Margulis L (1991) Symbiogenesis and symbionticism. In: Margulis RFE L (ed) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, pp 1–14Google Scholar
  173. Marhaeni B, Radjasa OK, Bengen DG, Kaswadji RF (2010) Screening of bacterial symbionts of seagrass Enhalus sp. against biofilm-forming bacteria. J Coastal Develop 13:126–132Google Scholar
  174. Mata JL, Cebrian J (2013) Fungal endophytes of the seagrasses Halodule wrightii and Thalassia testudinum in the north-central Gulf of Mexico. Bot Mar 56:541–545CrossRefGoogle Scholar
  175. Mateo MA, Cebrián J, Dunton K, Mutchler T (2006) Carbon flux in seagrass ecosystems. In: Larkum A, Orth R, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer-Verlag, Netherlands, pp 159–192Google Scholar
  176. Mateo MA, Cebrian J, Dunton K, Mutchler T (2007) Carbon flux in seagrass ecosystems. In: Larkum A, Orth RJ, Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, BerlinGoogle Scholar
  177. Mateo MA, Romero J, Perez M, Littler MM, Littler DS (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar Coast Shelf Sci 44:103–110CrossRefGoogle Scholar
  178. Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nature Commun 5:49501–49509Google Scholar
  179. McFall-Ngai M (2014) Divining the essence of symbiosis: insights from the squid-vibrio model. PLoS Biol 12(2):e1001783.  https://doi.org/10.1371/journal.pbio.1001783CrossRefPubMedPubMedCentralGoogle Scholar
  180. McGlathery KJ, Risgaard-Petersen N, Christensen PB (1998) Temporal and spatial variation in nitrogen fixation activity in the eelgrass Zostera marina rhizosphere. Mar Ecol Prog Ser 168:245–258CrossRefGoogle Scholar
  181. McGlathery KJ, Sundback K, Anderson IC (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser 348:1–18CrossRefGoogle Scholar
  182. McLeod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560.  https://doi.org/10.1890/110004CrossRefGoogle Scholar
  183. Meyer-Reil LA, Koster M (2000) Eutrophication of marine waters: effects on benthic microbial communities. Mar Pollut Bull 41:255–263CrossRefGoogle Scholar
  184. Michael TS, Shin HW, Hanna R, Spafford DC (2008) A review of epiphyte community development: surface interactions and settlement on seagrass. J Environ Biol 29:629–638PubMedGoogle Scholar
  185. Moffler MD, Durako MJ (1984) Axenic culture of Thalassia testudinum Banks Ex Konig (Hydrocharitaceae). Am J Bot 71:1455–1460CrossRefGoogle Scholar
  186. Moncreiff CA, Sullivan MJ (2001) Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotopte analyses. Mar Ecol Prog Ser 215:93–106CrossRefGoogle Scholar
  187. Moriarty DJW, Pollard PC (1982) Diel variation of bacterial productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA. Mar Biol 72:165–173.  https://doi.org/10.1007/bf00396917CrossRefGoogle Scholar
  188. Moriarty DJW, Boon PI, Hansen JA, Hunt WG, Poiner IR, Pollard PC, Skyring GW, White DC (1985) Microbial biomass and productivity in seagrass beds. Geomicrobiol J 4:21–51PubMedCrossRefGoogle Scholar
  189. Moriarty DJW, Iverson RL, Pollard PC (1986a) Exudation of organic carbon by the seagrass Halodule wrightii Aschers. And its effect on bacterial growth in the sediment. J Exp Mar Biol Ecol 96:115–126CrossRefGoogle Scholar
  190. Moriarty DJW, Iverson RL, Pollard PC (1986b) Exudation of Organic-carbon by the seagrass Halodule wrightii aschers and its effect on bacterial-growth in the sediment. J Exp Mar Biol Ecol 96:115–126.  https://doi.org/10.1016/0022-0981(86)90237-6CrossRefGoogle Scholar
  191. Mtui G, Nakamura Y (2008) Lignocellulosic enzymes from Flavodon flavus, a fungus isolated from Western Indian Ocean off the Coast of Dar es Salaam, Tanzania. Afr J Biotech 7:3066–3072Google Scholar
  192. Muehlstein L, Porter D, Short F (1988) Labyrinthula sp., a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Mar Biol 99:465–472CrossRefGoogle Scholar
  193. Muehlstein LK (1989) Perspectives on the wasting disease of eelgrass Zostera marina. Dis Aquat Organisms 7:211–221CrossRefGoogle Scholar
  194. Muehlstein LK, Porter D, Short FT (1991) Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia 83:180–191CrossRefGoogle Scholar
  195. Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.00138
  196. Munn CB (2006) Viruses as pathogens of marine organisms—from bacteria to whales. J Mar Biol Assoc U K 86:453–467CrossRefGoogle Scholar
  197. Neckles HA, Koepfler ET, Haas LW, Wetzel RL, Orth RJ (1994) Dynamics of epiphytic photoautotrophs and heterotrophs in Zostera marina (eelgrass) microcosms: responses to nutrient enrichment and grazing. Estuaries 17:597–605CrossRefGoogle Scholar
  198. Neckles HA, Wetzel RL, Orth RJ (1993) Relative effects of nutrient enrichment and grazing on epiphyte-macrophyte (Zostera marina L.) dynamics. Oecologia 93:285–295PubMedCrossRefGoogle Scholar
  199. Neubauer ATA, Pedersen AGU, Finster K, Herbert RA, Donnelly AP, Viaroli P, Giordani G, de Wit R, Lomstein BA (2004) Benthic decomposition of Zostera marina roots: a controlled laboratory experiment. J Exp Mar Biol Ecol 313:105–124.  https://doi.org/10.1016/j.jembe.2004.08.003CrossRefGoogle Scholar
  200. Neuhauser S, Kirchmair M, Gleason FH (2011) Ecological roles of the parasitic phytomyxids (plasmodiophorids) in marine ecosystems—a review. Mar Freshw Res 62:365–371PubMedPubMedCentralCrossRefGoogle Scholar
  201. Newsham KK (2011) A meta-anlysis of plant responses to dark septate root endophytes. New Phytol 190:783–793PubMedCrossRefGoogle Scholar
  202. Nielsen JT, Liesack W, Finster K (1999a) Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina. Int J Syst Bacteriol 49:859–865PubMedCrossRefGoogle Scholar
  203. Nielsen LB, Finster K, Welsh DT, Donelly A, Herbert RA, de Wit R, Lomstein BA (2001) Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows. Environ Microbiol 3:63–71.  https://doi.org/10.1046/j.1462-2920.2001.00160.xCrossRefPubMedGoogle Scholar
  204. Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463:1071–1074PubMedCrossRefGoogle Scholar
  205. Nielsen SL, Thingstrup I, Wigand C (1999b) Apparent lack of vesicular-arbuscular mycorrhiza (VAM) in the seagrasses Zostera marina L. and Thalassia testudinum Banks ex Konig. Aquat Bot 63:261–266CrossRefGoogle Scholar
  206. Novak R (1984) A study in ultra-ecology: microorganisms on the seagrass Posidonia oceanica (L.) DELILE. Mar Ecol 5:143–190CrossRefGoogle Scholar
  207. O’Donohue MJ, Moriarty DJW, McRae IC (1991) Nitrogen fixation in sediments and the rhizosphere of the seagrass Zostera Capricornia. Microb Ecol 22:53–64PubMedCrossRefGoogle Scholar
  208. Olsen YS, Potouroglou M, Garcias-Bonet N, Duarte CM (2015) Warming reduces pathogen pressure on a climate-vulnerable seagrass species. Estuar Coast 38:659–667.  https://doi.org/10.1007/s12237-014-9847-9CrossRefGoogle Scholar
  209. Ottosen LDM, Risgaard-Petersen N, Nielsen LP (1999) Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquat Microb Ecol 19:81–91CrossRefGoogle Scholar
  210. Panno L, Bruno M, Voyron S, Anastasi A, Gnavi G, Miserere L, Varese GC (2013) Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnol 30:685–694CrossRefGoogle Scholar
  211. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.  https://doi.org/10.1038/nature01286CrossRefPubMedGoogle Scholar
  212. Patriqnin D, Knowles R (1972) Nitrogen fixation in the rhizosphere of marine angiosperms. Mar Biol 16:49–58CrossRefGoogle Scholar
  213. Patriquin DG (1972) The origin of nitrogen and phosphorous for growth of the marine angiosperm Thalassia testudinum. Mar Biol 15:35–46CrossRefGoogle Scholar
  214. Pawlik JR (1993) Marine invertebrate chemical defenses. Chem Rev 93(5):1911–1922CrossRefGoogle Scholar
  215. Pedersen MO, Serrano O, Mateo MA, Holmer M (2011) Temperature effects on decomposition of a Posidonia oceanica mat. Aquat Microb Ecol 65:169–182.  https://doi.org/10.3354/ame01543CrossRefGoogle Scholar
  216. Pedersen O, Borum J, Duarte CM, Fortes MD (1998) Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Mar Ecol Prog Ser 169:283–288CrossRefGoogle Scholar
  217. Peduzzi P, Herndl GJ (1991) Decomposition and significance of seagrass leaf litter (Cymodocea nodosa) for the microbial food web in coastal waters (Gulf of Trieste, northern Adriatic Sea). Mar Ecol Prog Ser 71(2):163–174CrossRefGoogle Scholar
  218. Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Plant Soil 174:3–28CrossRefGoogle Scholar
  219. Pereg LL, Lipkin Y, Sar N (1994) Different niches of the Halophila stipulacea seagrass bed harbour distinct populations of nitrogen fixing bacteria. Mar Biol 119:327–333CrossRefGoogle Scholar
  220. Perez M, Invers O, Ruiz JM, Frederiksen MS, Holmer M (2007) Physiological responses of the seagrass Posidonia oceanica to elevated organic matter content in sediments: an experimental assessment. J Exp Mar Biol Ecol 344:149–160CrossRefGoogle Scholar
  221. Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, Dove S (2012) A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J 6:1314–1324PubMedPubMedCentralCrossRefGoogle Scholar
  222. Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Kjeldsen KU, Schreiber L, Gorby YA, El-Naggar MY, Leung KM, Schramm A, Risgaard-Petersen N, Nielsen LP (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–221.  https://doi.org/10.1038/nature11586CrossRefPubMedGoogle Scholar
  223. Pinckney JL, Micheli F (1998) Microalgae on seagrass mimics: does epiphyte community structure differ from live seagrasses? J Exp Mar Biol Ecol 221:59–70CrossRefGoogle Scholar
  224. Pirozynski KA, Dalpé Y (1989) Geological history of the Glomaceae, with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36Google Scholar
  225. Pollard PC, Moriarty DJW (1991) Organic carbon decomposition, primary and bacterial productivity, and sulfate reduction in tropical seagrass beds of the Gulf of Carpentaria, Australia. Mar Ecol Prog Ser 69(1–2):149–159.  https://doi.org/10.3354/meps069149CrossRefGoogle Scholar
  226. Porter D (1990) Phylum labyrinthulomycota. In: Handbook of protoctista. Jones and Bartlett, pp 388–398Google Scholar
  227. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  228. Puglisi MP, Engel S, Jensen PR, Fenical W (2007) Antimicrobial activities of extracts from Indo-Pacific marine plants against marine pathogens and saprophytes. Mar Biol 150:531–540CrossRefGoogle Scholar
  229. Raghukumar C, D’Souza TM, Thorn RG, Reddy CA (1999) Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65:2103–2111PubMedPubMedCentralGoogle Scholar
  230. Ralph PJ, Short FT (2002) Impact fo the wasting disease pathogen, Labyrinthula zosterae, on the photobiology of eelgrass Zostera marina. Mar Ecol Prog Ser 226:265–271CrossRefGoogle Scholar
  231. Ravn H, Pedersen MF, Borum J, Andary C, Anthoni U, Christophersen C, Nielsen PH (1994) Seasonal variation and distribution of two phenolic compounds, rosmarinic acid and caffeic acid, in leaves and roots-rhizomes of eelgrass (Zostera marina L.). Ophelia 40:51–61CrossRefGoogle Scholar
  232. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred million year old vesicular arbuscular mycorrhizae. Proc Nat Acad USA 91:11841–11843CrossRefGoogle Scholar
  233. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073PubMedCrossRefGoogle Scholar
  234. Revsbech NP, Jørgensen BB, Blackburn TH (1980) Oxygen in the sea bottom measured with a microelectrode. Science 207:1355–1356CrossRefGoogle Scholar
  235. Risgaard-Petersen N, Dalsgaard T, Rysgaard S, Christensen PB, Borum J, McGlathery K, Nielsen LP (1998) Nitrogen balance of a temperate eelgrass Zostera marina bed. Mar Ecol Prog Ser 174:281–291CrossRefGoogle Scholar
  236. Risgaard-Petersen N, Ottosen LDM (2000) Nitrogen cycling in two temperate Zostera marina beds: seasonal variation. Mar Ecol Prog Ser 198:93–107CrossRefGoogle Scholar
  237. Robblee M, Barber T, Carlson P Jr, Durako M, Fourqurean J, Muehlstein L, Porter D, Yarbro L, Zieman R, Zieman J (1991) Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Mar Ecol Prog Ser 71:297–299CrossRefGoogle Scholar
  238. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10CrossRefGoogle Scholar
  239. Romero J, Lee KS, Perez M, Mateo MA, Alcoverro T (2006) Nutrient dynamics in seagrass ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: Biology, ecology and conservation. Springer, Berlin, pp 227–254Google Scholar
  240. Rosenblueth M, Martinez-Romeroa E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 8:827–837CrossRefGoogle Scholar
  241. Ross C, Puglisi MP, Paul VJ (2008) Antifungal defenses of seagrasses from the Indian River Lagoon, Florida. Aquat Bot 88:134–141CrossRefGoogle Scholar
  242. Rosselló-Mora R, Thamdrup B, Schäfer H, Weller R, Amann R (1999) The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. Syst Appl Microbiol 22:237–248PubMedCrossRefGoogle Scholar
  243. Rysgaard S, Christensen PB, Nielsen LP (1995) Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Mar Ecol Prog Ser 126:111–121CrossRefGoogle Scholar
  244. Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45CrossRefGoogle Scholar
  245. Sala MM, Aparicio FL, Balague V, Boras JA, Borrull E, Cardelus C, Cros L, Gomes A, Lopez-Sanz A, Malits A, Martinez RA, Mestre M, Movilla J, Sarmento H, Vazquez-Dominguez E, Vaque D, Pinhassi J, Calbet A, Calvo E, Gasol JM, Pelejero C, Marrase C (2016) Contrasting effects of ocean acidification on the microbial food web under different trophic conditions. ICES J Mar Sci 73(3):670–679CrossRefGoogle Scholar
  246. Sand Jensen K (1977) Effects of epiphytes on eelgrass photosynthesis. Aquat Bot 3:55–63CrossRefGoogle Scholar
  247. Sarmento H, Montoya JM, Vazquez-Dominguez E, Vaque D, Gasol JM (2010) Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc B-Biol Sci 365:2137–2149.  https://doi.org/10.1098/rstb.2010.0045CrossRefGoogle Scholar
  248. Sathe V, Raghukumar S (1991) Fungi and their biomass in detritus of the seagrass Thalassia hemprichii (Ehrenberg) Acherson. Bot Mar 34:271–277CrossRefGoogle Scholar
  249. Schulz B, Boyle C (2006) What are endophytes? In Microbial Root Endophytes. In: Sieber TN (ed) Soil biology, vol 9. Springer, BerlinGoogle Scholar
  250. Semesi IS, Beer S, Bjork M (2009) Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Mar Ecol Prog Ser 382:41–47.  https://doi.org/10.3354/meps07973CrossRefGoogle Scholar
  251. Seymour JR (2014) A sea of microbes: the diversity and activity of marine microorganisms. Microbiol Aust 35:183–187Google Scholar
  252. Shiba T, Shioi Y, Takamiya K-I, Sutton DC, Wilkinson CR (1991) Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coasts of Australia. Appl Environ Microbiol 57:295–300PubMedPubMedCentralGoogle Scholar
  253. Shieh W, Yang J (1997) Denitrification in the rhizosphere of the two seagrasses Thalassia hemprichii (Ehrenb.) Aschers and Halodule uninervis (Forsk.) Aschers. J Exp Mar Biol Ecol 218:229–241CrossRefGoogle Scholar
  254. Shieh WY, Chen AL, Chiu HH (2000) Vibrio aerogenes sp nov., a facultatively anaerobic marine bacterium that ferment glucose with gas production. Int J Syst Evol Microbiol 50:321–329PubMedCrossRefGoogle Scholar
  255. Shoemaker G, Wyllie-Echeverria S (2013) Occurrence of rhizomal endophytes in three temperate northeast pacific seagrasses. Aquat Bot 111:71–73CrossRefGoogle Scholar
  256. Short FT, Koch EW, Creed JC, Magalhaes KM, Fernandez E, Gaeckle JL (2006) SeagrassNet monitoring across the Americas: case studies of seagrass decline. Mar Ecol Evol Perspect 27(4):277–289.  https://doi.org/10.1111/j.1439-0485.2006.00095.xCrossRefGoogle Scholar
  257. Short FT, Neckles HA (1999) The effects of global climate change on seagrasses. Aquat Bot 63(3–4):169–196CrossRefGoogle Scholar
  258. Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Current Opinion Gastroentorology 31:69–75CrossRefGoogle Scholar
  259. Smith GW, Hayasaka SS, Thayer GW (1979) Root surface area measurements of Zostera marina and Halodule wrightii. Bot Mar 22:347–358Google Scholar
  260. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  261. Soetaert K, Hofmann AF, Middelburg JJ, Meysman FJR, Greenwood J (2007) The effect of biogeochemical processes on pH. Mar Chem 105:30–51CrossRefGoogle Scholar
  262. Sogin ML et al (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA 103:12115–12120PubMedCrossRefGoogle Scholar
  263. Stapel J, Aarts TL, van Duynhoven BHM, de Groot JD, van den Hoogen PHW, Hemminga MA (1996) Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Mar Ecol Prog Ser 134:195–206CrossRefGoogle Scholar
  264. Statton J, Cambridge ML, Dixon KW (2013) Aquaculture of Posidonia australis seedlings for seagrass restoration programs: effect of sediment type and organic enrichment on growth. Restor Ecol 250–259Google Scholar
  265. Sullivan BK, Sherman TD, Damare VS, Lilje O, Gleason FH (2013) Potential roles of Labyrinthula spp. in global seagrass population declines. Fungal Ecol 6:328–338CrossRefGoogle Scholar
  266. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS ONE 8:e72520PubMedPubMedCentralCrossRefGoogle Scholar
  267. Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801–812. 6Google Scholar
  268. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedPubMedCentralCrossRefGoogle Scholar
  269. Terrados J, Duarte CM, Kamp-Nielsen L, Agawin NSR, Gacia E, Lacap D, Fortes MD, Borum J, Lubanski M, Greve T (1999) Are seagrass growth and survival constrained by the reducing conditions of the sediment. Aquat Bot 65:175–197CrossRefGoogle Scholar
  270. Thomas F, Giblin AE, Cardon ZG, Sievert SM (2014) Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front Microbiol 5.  https://doi.org/10.3389/fmicb.2014.00309
  271. Thomson JA, Burkholder DA, Heithaus MR, Fourqurean JW, Fraser MW, Statton J, Kendrick GA (2015) Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob Change Biol 21:1463–1474CrossRefGoogle Scholar
  272. Torta L, Lo Piccolo S, Piazza G, Burruano S, Colombo P, Ottonello D, Perrone R, Di Maida G, Pirrotta M, Tomasello A (2015) Lulwoana sp., a dark septate endophyte in roots of Posidonia oceanica (L.) Delile seagrass. Plant Biol 17:505–511PubMedCrossRefGoogle Scholar
  273. Touchette BW, Burkholder JM (2000) Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Biol Ecol 250:133–167PubMedCrossRefGoogle Scholar
  274. Tout JA, Siboni N, Messer LF, Garren M, Stocker R, Webster NS, Ralph PJ, Seymour JR (2015) Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Front Microbiol http://dx.doi.org/10.3389/fmicb.2015.00432
  275. Trevathan-Tackett SM, Macreadie P, Ralph P, Seymour J (2014) Detachment and flow cytometric quantification of seagrass-associated bacteria. J Microbiol Methods 102:23–25PubMedCrossRefGoogle Scholar
  276. Trevathan-Tackett SM, Lane AL, Bishop N, Ross C (2015) Metabolites derived from the tropical seagrass Thalassia testudinum are bioactive against pathogenic Labyrinthula sp. Aquat Bot 122:1–8CrossRefGoogle Scholar
  277. Trias R, Garcia-Lledo A, Sanchez N, Lopez-Jurado JL et al (2012) Abundance and composition of epiphytic bacterial and archaeal ammonia oxidizers of marine red and brown macroalgae. Appl Environ Microbiol 78:318–325PubMedPubMedCentralCrossRefGoogle Scholar
  278. Uku J, Björk M, Bergman B, Díez B (2007) Characterization and comparison of prokaryotic epiphytes associated with three east African seagrasses. J Phycol 43:768–779CrossRefGoogle Scholar
  279. Unsworth RKF, Collier CJ, Waycott M, Mckenzie LJ, Cullen-Unsworth LC (2015) A framework for the resilience of seagrass ecosystems. Mar Pollut Bull (in press)Google Scholar
  280. van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, van Katwijk MM, Piersma T, van de Koppel J, Silliman BR, Smolders AJP, van Gils JA (2012) A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336:1432–1434PubMedCrossRefPubMedCentralGoogle Scholar
  281. Van Etten JL, Graves MV, Muller DG, Boland W, Delaroque N (2002) Phycodnaviridae-large DNA algal viruses. Arch Virol 147:1479–1516PubMedCrossRefGoogle Scholar
  282. van Montfrans J, Wetzel RL, Orth RJ (1984) Epiphyte-grazer relationships in seagrass meadows: consequences for seagrass growth and production. Estuaries 7:289–309CrossRefGoogle Scholar
  283. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206PubMedCrossRefGoogle Scholar
  284. Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F et al (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163PubMedCrossRefGoogle Scholar
  285. Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65CrossRefGoogle Scholar
  286. Vergeer LHT, den Hartog C (1994) Omnipresence of Labyrinthulaceae in seagrasses. Aquat Bot 48(1):1–20.  https://doi.org/10.1016/0304-3770(94)90070-1CrossRefGoogle Scholar
  287. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  288. Vichkovitten T, Holmer M (2004) Contribution of plant carbohydrates to sedimentary carbon mineralization. Org Geochem 35(9):1053–1066.  https://doi.org/10.1016/j.orggeochem.2004.04.007CrossRefGoogle Scholar
  289. Vohník M, Borovec O, Župan I, Vondrášek D, Petrtýl M, Sudová R (2015) Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean endemic seagrass Posidonia oceanica. Mycorrhiza 25:663–672PubMedCrossRefGoogle Scholar
  290. Vonk JA, Middelburg JJ, Stapel J, Bouma TJ (2008) Dissolved organic nitrogen uptake by seagrasses. Limnol Oceanogr 53:542–548CrossRefGoogle Scholar
  291. Wahbeh MI, Mahasneh AM (1984) Heterotrophic bacteria attached to leaves, rhizomes and roots of three seagrass species from Aqaba (Jordan). Aquat Bot 20:87–96CrossRefGoogle Scholar
  292. Wahbeh MI, Mahasneh AM (1985) Some aspects of decomposition of leaf litter of the seagrass Halophila stipulacea from the gulf of Aqaba (Jordan). Aquat Bot 21:237–244CrossRefGoogle Scholar
  293. Wainwright M, Lederberg J (1992) History of microbiology, vol 2 of Encyclopedia of Microbiology. Academic PressGoogle Scholar
  294. Walker AK, Campbell J (2009) First records of the seagrass parasite Plasmodiophora diplantherae from the northcentral Gulf of Mexico. Gulf Caribb Res 21:63–65CrossRefGoogle Scholar
  295. Wang Y, Zhang R, Zheng Q, Deng Y, Van Nostrand JD, Zhou J, Jiao N (2016) Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis. ICES J Mar Sci 73:865–875CrossRefGoogle Scholar
  296. Weidner S, Arnold W, Stackebrandt E, Pühler A (2000) Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit RNA gene approach. Microb Ecol 39:22–31PubMedCrossRefGoogle Scholar
  297. Welsh DT (2000) Nitrogen fixation in seagrass meadows: regulation, plant-bacteria interactions and significance to primary productivity. Ecol Lett 3:58–71CrossRefGoogle Scholar
  298. Welsh DT, Bourgues S, de Wit R, Auby I (1997) Effect of plant photosynthesis, carbon sources and ammonium availability on nitrogen fixation rates in the rhizosphere of Zostera noltii. Aquat Microb Ecol 12:285–290CrossRefGoogle Scholar
  299. Welsh DT, Bourgues S, deWit R, Herbert RA (1996) Seasonal variations in nitrogen-fixation (acetylene reduction) and sulphate-reduction rates in the rhizosphere of Zostera noltii: Nitrogen fixation by sulphate reducing bacteria. Mar Biol 125:619–628CrossRefGoogle Scholar
  300. Welsh DT, Castadelli G, Bartoli M, Poli D, Careri M, de-Wit R, Viaroli P (2001) Denitrification in an intertidal seagrass meadow, a comparison of 15 N-isotope and acetylene-block techniques: dissimilatory nitrate reduction to ammonia as a source of N2O. Mar Biol 139:1029–1036CrossRefGoogle Scholar
  301. Welsh DT, Marco B, Nizzoli D, Castaldelli G, Riuo SA, Viaroli P (2000) Denitrification, nitrogen fixation, community primary productivity, and inorganic-N and Oxygen fluxes in an intertidal Zostera noltii meadow. Mar Ecol Prog Ser 208:65–77CrossRefGoogle Scholar
  302. Wetzel RG, Penhale PA (1979) Transport of carbon and excretion of dissolved organic carbon by leaves and roots/rhizomes in seagrasses and their epiphytes. Aquat Bot 6:149–158.  https://doi.org/10.1016/0304-3770(79)90058-5CrossRefGoogle Scholar
  303. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majorty. Proc Natl Acad Sci USA 95:6578–6583PubMedCrossRefGoogle Scholar
  304. Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49:781–788CrossRefGoogle Scholar
  305. Williams CJ, Boyer JN, Jochem FJ (2009) Microbial activity and carbon, nitrogen, and phosphorus content in a subtropical seagrass estuary (Florida Bay): evidence for limited bacterial use of seagrass production. Mar Biol 156:341–353CrossRefGoogle Scholar
  306. Wilson W (1998) Isolation of Endophytes from seagrasses from Bermuda. University of New Brunswick, pp 4–69Google Scholar
  307. Yoon J, Oku N, Matsuda S, Kasai H, Yokota A (2007) Pelagicoccus croceus sp nov., a novel marine member of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’ isolated from seagrass. Int J Syst Evol Microbiol 2874–2880Google Scholar
  308. Zapata O, McMillan C (1979) Phenolic acids in seagrasses. Aquat Bot 7:307–317CrossRefGoogle Scholar
  309. Zhang F, Pita L, Erwin PM, Abaid S, Lopez-Legentil S, Hill RT (2014) Symbiotic archaea in marine sponges show stability and host specificity in community structure and ammonia oxidation functionality. FEMS Microbiol Ecol 90:699–707PubMedCrossRefGoogle Scholar
  310. Ziegler S, Benner R (1999) Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Mar Ecol Prog Ser 180:149–160CrossRefGoogle Scholar
  311. Zieman J, Macko S, Mills A (1984) Role of seagrasses and mangroves in estuarine food webs: temporal and spatial changes in stable isotope composition and amino acid content during decomposition. Bull Mar Sci 35:380–392Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • J. R. Seymour
    • 1
  • B. Laverock
    • 1
    • 2
  • D. A. Nielsen
    • 3
  • S. M. Trevathan-Tackett
    • 1
    • 4
  • P. I. Macreadie
    • 4
  1. 1.Climate Change ClusterUniversity of Technology SydneyBroadwayAustralia
  2. 2.Institute for Applied Ecology New Zealand, Auckland University of TechnologyAucklandNew Zealand
  3. 3.School of Life SciencesUniversity of Technology SydneyBroadwayAustralia
  4. 4.School of Life and Environmental SciencesCentre for Integrative Ecology, Deakin UniversityBurwoodAustralia

Personalised recommendations