Spear Operators Between Banach Spaces pp 97-102 | Cite as
Isometric and Isomorphic Consequences
Chapter
First Online:
Abstract
Our goal here is to present consequences on the Banach spaces X and Y of the fact that there is \(G\in \mathcal {L}(X,Y)\) which is a spear operator, is lush, or has the aDP.
References
- 9.A. Avilés, V. Kadets, M. Martín, J. Merí, V. Shepelska, Slicely countably determined Banach spaces. Trans. Am. Math. Soc. 362, 4871–4900 (2010)Google Scholar
- 34.R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64 (Longman Scientific and Technical, London, 1993)Google Scholar
- 66.V. Kadets. M. Martín, J. Merí, R. Payá, Convexity and smoothness of Banach spaces with numerical index one. Ill. J. Math. 53, 163–182 (2009)Google Scholar
- 82.J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I: Sequence Spaces (Springer, Berlin, 1977)CrossRefGoogle Scholar
- 115.M. Smith, Some examples concerning rotundity in Banach spaces. Math. Ann. 233, 155–161 (1978)MathSciNetCrossRefGoogle Scholar
- 118.D. Van Duslt, Characterizations of Banach Spaces Not Containing ℓ 1. CWI Tract, vol. 59 (Stichting Mathematisch Centrum/Centrum voor Wiskunde en Informatica, Amsterdam, 1989)Google Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018