IR Playbook pp 115-130 | Cite as

Central Venous Access

  • Daniel M. DePietro
  • Scott O. TrerotolaEmail author


Venous access plays a vital role in patient care and is necessary for the treatment and management of those with a wide range of illnesses. Central venous access allows for safe, long-term delivery of a variety of therapies that cannot be delivered through peripheral venous access. While the role of central venous access in modern medicine was established by surgeons and anesthesiologists, the development of percutaneous (rather than surgical) venous access, advances in ultrasound and fluoroscopic guidance, and innovative interventional techniques have led interventional radiology to become the dominant provider of more than five million central venous catheters each year in the United States. While in the remote past IRs were regarded as predominately technicians, this crucial role in patient care has expanded the IR’s role to include consultant and clinician. As experts in central venous access, IRs are relied upon to determine the proper access device for each patient, to safely and reliably place these devices, and to provide long-term follow-up care of those who have a device in place. A proper understanding of the types of central venous access devices, the data supporting their placement by interventional radiologists, and their indications, complications, and techniques for placement are of utmost importance to the IR in training.


Central Venous Access Catheter Tunneled Non-tunneled Port Peripherally Inserted PICC Midline 


  1. 1.
    Cheung E, Baerlocher MO, Asch M, Myers A. Venous access: a practical review for 2009. Can Fam Physician Médecin Fam Can [Internet]. 2009;55(5):494–6. Available from: Scholar
  2. 2.
    Dudrick SJ. History of vascular access. J Parenter Enter Nutr. 2006;30(1):S47–56.CrossRefGoogle Scholar
  3. 3.
    Duszak R Jr, Bilal N, Picus D, Hughes DR, Xu BJ. Central venous access: evolving roles of radiology and other specialties nationally over two decades. J Am Coll Radiol. 2013;10(8):603–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Mauro MA, Jaques PF. Radiologic placement of long-term central venous catheters: a review. J Vasc Interv Radiol. 1993;4(1):127–37.CrossRefPubMedGoogle Scholar
  5. 5.
    Denny DF Jr. Placement and management of long-term central venous access catheters and ports. AJR Am J Roentgenol. 1993;161(2):385–93.CrossRefPubMedGoogle Scholar
  6. 6.
    The Joint Commission. Preventing central line-associated bloodstream infections: a global challenge, a global. Perspective. 2012;136. Available from:
  7. 7.
    Chopra V, Ratz D, Kuhn L, Lopus T, Chenoweth C, Krein S. PICC-associated bloodstream infections: prevalence, patterns, and predictors. Am J Med [Internet]. 2014;127(4):319–28. Available from: Scholar
  8. 8.
    Chopra V, Flanders SA, Saint S, Woller SC, O’Grady NP, Safdar N, et al. The Michigan appropriateness guide for intravenous catheters (MAGIC): results from a multispecialty panel using the RAND/UCLA appropriateness method. Ann Intern Med. 2015;163(6):S1–39.CrossRefPubMedGoogle Scholar
  9. 9.
    Hickman R, Buckner C, Clift R, Sanders J, Stewart P, Thomas E. A modified right atrial catheter for access to the venous system in marrow transplant recipients. Surg Gynecol Obstet. 1979;148(6):871–5.PubMedGoogle Scholar
  10. 10.
    Galloway S. Long-term central venous access. Br J Anaesth [Internet]. 2004;92(5):722–34. Available from: Scholar
  11. 11.
    Reeves AR, Seshadri R, Trerotola SO. Recent trends in central venous catheter placement: a comparison of interventional radiology with other specialties. J Vasc Interv Radiol. 2001;12(10):1211–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Aubaniac R. Subclavian intravenous transfusion: advantages and technic. Afr Fr Chir. 1952;8(3–4):131.PubMedGoogle Scholar
  13. 13.
    Broviac JW, Cole JJ, Scribner BH. A silicone rubber atrial catheter for prolonged parenteral alimentation. Surg Gynecol Obstet. 1973;136(4):602–6.PubMedGoogle Scholar
  14. 14.
    Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc [Internet]. 2006;81(9):1159–71. Available from: Scholar
  15. 15.
    Hawkins J, Nelson EW. Percutaneous placement of Hickman catheters for prolonged venous access. Am J Surg. 1982;144(6):624–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Stellato T, Gauderer M, Cohen A. Direct central vein puncture for silicone rubber catheter insertion: an alternative technique for broviac catheter placement. Surgery. 1981;90(5):896–9.PubMedGoogle Scholar
  17. 17.
    Kirkemo A, Johnston M. Percutaneous subclavian vein placement of the Hickman catheter. Surgery. 1982;91:349–51.PubMedGoogle Scholar
  18. 18.
    McBride KD, Fisher R, Warnock N, Winfield DA, Reed MW, Gaines PA. A comparative analysis of radiological and surgical placement of central venous catheters. Cardiovasc Intervent Radiol. 1997;20(1):17–22.CrossRefPubMedGoogle Scholar
  19. 19.
    Niederhuber J, Ensminger W, Gyves J, Liepman M, Doan K, Cozzi E. Totally implanted venous and arterial access system to replace external catheters in cancer treatment. Surgery. 1982;92(4):706–12.PubMedGoogle Scholar
  20. 20.
    Brothers T, Von Moll L, Niederhuber J, Roberts J, Walker-Andrews S, Ensminger W. Experience with subcutaneous infusion ports in three hundred patients. Surg Gynecol Obstet. 1988;166(4):295–301.PubMedGoogle Scholar
  21. 21.
    Foley MJ. Radiologic placement of long-term central venous peripheral access system ports (PAS port): results in 150 patients. J Vasc Interv Radiol [Internet]. 1995;6(2):255–62. Available from: Scholar
  22. 22.
    Andrews JC, Marx MV, Williams DM, Sproat I, Walker-Andrews SC. The upper arm approach for placement of peripherally inserted central catheters for protracted venous access. Am J Roentgenol. 1992;158(2):427–9.CrossRefGoogle Scholar
  23. 23.
    Robertson LJ, Mauro MA, Jaques PF. Radiologic placement of Hickman catheters. Radiology [Internet]. 1989;170(3 Pt 2):1007–9. Available from: Scholar
  24. 24.
    Skolnick ML. The role of sonography in the placement and management of jugular and subclavian central venous catheters. Am J Roentgenol. 1994;163(2):291–5.CrossRefGoogle Scholar
  25. 25.
    Page AC, Evans RA, Kaczmarski R, Mufti GJ, Gishen P. The insertion of chronic indwelling central venous catheters (Hickman lines) in interventional radiology suites. Clin Radiol. 1990;42(2):105–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Cockburn JF, Eynon CA, Virji N, Jackson JE. Insertion of Hickman central venous catheters by using angiographic techniques in patients with hematologic disorders. Am J Roentgenol. 1992;159(1):121–4.CrossRefGoogle Scholar
  27. 27.
    Andrews JC. Long-term central venous access with a peripherally placed subcutaneous infusion port: initial results. Radiology. 1990;176:45–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Funaki B, Szymski GX, Hackworth CA, Rosenblum J, Burke R, Chang T, et al. Radiologic placcement of subcutaneous infusion chest ports for long-term central venous access. AJR Am J Roentgenol. 1997;169(5):1431–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Morris SL, Jaques PF, Mauro MA. Radiology-assisted placement of implantable subcutaneous infusion ports for long-term venous access. Radiology. 1992;184:149–51.CrossRefPubMedGoogle Scholar
  30. 30.
    Seiler CM, Frohlich BE, Dorsam UJ, Kienle P, Buchler MW, Knaebel H-P. Surgical technique for totally implantable access ports (TIAP) needs improvement: a multivariate analysis of 400 patients. J Surg Oncol. 2006;93:24–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Shetty PC, Mody MK, Kastan DJ, Sharma RP, Burke MW, Venugopal C, et al. Outcome of 350 implanted chest ports placed by interventional radiologists. J Vasc Interv Radiol JVIR [Internet]. 1997;8(6):991–5. Available from: Scholar
  32. 32.
    Gebauer B, El-Sheik M, Vogt M, Wagner HJ. Combined ultrasound and fluoroscopy guided port catheter implantation-high success and low complication rate. Eur J Radiol. 2009;69(3):517–22.CrossRefPubMedGoogle Scholar
  33. 33.
    LaRoy JR, White SB, Jayakrishnan T, Dybul S, Ungerer D, Turaga K, et al. Cost and morbidity analysis of chest port insertion: interventional radiology suite versus operating room. J Am Coll Radiol [Internet]. 2015;12(6):563–71. Available from: Scholar
  34. 34.
    Cardella JF, Cardella K, Bacci N, Fox PS, Post JH. Cumulative experience with 1,273 peripherally inserted central catheters at a single institution. J Vasc Interv Radiol [Internet]. 1996;7(1):5–13. Available from: Scholar
  35. 35.
    Malloy PC, Grassi CJ, Kundu S, Gervais DA, Miller DL, Osnis RB, et al. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol [Internet]. 2009;20(7):S240–9. Available from: Scholar
  36. 36.
    Trerotola SO, Kuhn-Fulton J, Johnson MS, Shah H, Ambrosius WT, Kneebone PH. Tunneled infusion catheters: increased incidence of symptomatic venous thrombosis after subclavian versus internal jugular venous access. Radiology [Internet]. 2000;217(1):89–93. Available from: Scholar
  37. 37.
    Kandarpa K, Machan L, Durham JD. Central access devices: nontunneled. In: Handbook of interventional radiologic procedures. 5th ed. Philadelphia: Wolters Kluwer; 2016. p. 302.Google Scholar
  38. 38.
    Sasadeusz KJ, Trerotola SO, Shah H, Namyslowski J, Johnson MS, Moresco KP, et al. Tunneled jugular small-bore central catheters as an alternative to peripherally inserted central catheters for intermediate-term venous access in patients with hemodialysis and chronic renal insufficiency. Radiology. 1999;213:303–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Trerotola SO, Patel AA, Shlansky-Goldberg RD, Solomon JA, Mondschein JI, Stavropoulos SW, et al. Short-term infection in cuffed versus noncuffed small bore central catheters: a randomized trial. J Vasc Interv Radiol [Internet]. 2010;21(2):203–11. Available from: Scholar
  40. 40.
    Chick JFB, Reddy SN, Yam BL, Kobrin S, Trerotola SO. Institution of a hospital-based central venous access policy for peripheral vein preservation in patients with chronic kidney disease: a 12-year experience. J Vasc Interv Radiol [Internet]. 2016:1–6. Available from:
  41. 41.
    Denny DF Jr, Greenwood LH, Morse SS, Lee GK, Baquero J. Inferior vena cava: Translumbar catheterization for central venous access. Radiology [Internet]. 1989;172(3 II):1013–4. Available from: Scholar
  42. 42.
    Stavropoulos SW, Pan JJ, Clark TWI, Soulen MC, Shlansky-Goldberg RD, Itkin M, et al. Percutaneous transhepatic venous access for hemodialysis. J Vasc Interv Radiol. 2003;14:1187–90.CrossRefPubMedGoogle Scholar
  43. 43.
    Kaufman JA. Central venous access. In: Vascular and interventional radiology: the requisites. Philadelphia: Saunders; 2014. p. 147.Google Scholar
  44. 44.
    Schutz JCLL, Patel AA, Clark TW II, Solomon JA, Freiman DB, Tuite CM, et al. Relationship between chest port catheter tip position and port malfunction after interventional radiologic placement. J Vasc Interv Radiol [Internet]. 2004;15(6):581–7. Available from: Scholar
  45. 45.
    Smith JC, Sullivan KL, Michael B. Postprocedural aspiration test to predict adequacy of dialysis following tunneled catheter placement. Cardiovasc Intervent Radiol. 2006;29(4):576–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Duncan C, Trerotola SO. Outcomes of a percutaneous technique for shortening of totally implanted indwelling central venous chest port catheters. J Vasc Interv Radiol [Internet]. 2016;27(7):1034–7. Available from: Scholar
  47. 47.
    Kolbeck KJ, Stavropoulos SW, Trerotola SO. Aerostasis during central venous access: updates in protective sheaths. J Vasc Interv Radiol. 2006;17(Cvc):1155–63.CrossRefPubMedGoogle Scholar
  48. 48.
    Bhutta ST, Culp WC. Evaluation and management of central venous access complications. Tech Vasc Interv Radiol [Internet]. 2011;14(4):217–24. Available from: Scholar
  49. 49.
    Nadolski G, Shlansky-Goldberg RD, Stavropoulos SW, Soulen MC, Farrelly C, Trerotola SO. Chest radiograph-based algorithm for managing malfunctioning ports. J Vasc Interv Radiol [Internet]. 2013;24(9):1337–42. Available from: Scholar
  50. 50.
    Kandarpa K, Machan L, Durham JD. Central access devices: tunneled. In: Handbook of interventional radiologic procedures. Philadelphia: Lippincott Williams & Wilkins; 2016. p. 317.Google Scholar
  51. 51.
    Stecker MS, Johnson MS, Ying J, Mclennan G, Agarwal DM, Namyslowski J, et al. Time to hemostasis after traction removal of Tunneled cuffed central venous catheters. J Vasc Interv Radiol. 2007;18(10):1232–9; quiz 1240.CrossRefPubMedGoogle Scholar
  52. 52.
    Kohli MD, Trerotola SO, Namyslowski J, Stecker MS, Mclennan G, Patel NH, et al. Outcome of polyester cuff retention following traction removal of tunneled central venous catheters 1. J Vasc Interv Radiol. 1997;219(3):651–4.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Perelman School of Medicine of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations