IR Playbook pp 99-113 | Cite as

Vascular Access Techniques and Closure Devices

  • Vivian Lee Bishay
  • Ross B. Ingber
  • Paul J. O’Connor
  • Aaron M. FischmanEmail author


Although noninvasive imaging technologies have advanced significantly, invasive angiography remains the gold standard for diagnosis of a number of vascular pathologies. Minimally invasive therapy provided through transarterial and transvenous routes continues to increase for a variety of disease processes including cancer therapy, neurovascular pathology, atherosclerotic vascular disease, congenital vascular malformations, thrombosis, and management of active hemorrhage. Arterial access methods continue to progress by using nonstandard access vessels with a goal to improve patient safety, comfort, and facilitate procedural technical success. Venous interventions are varied and include thrombo-occlusive disease management, venoplasty, and venous access. Complex venous access techniques are often necessary for patients requiring a chronic central venous access. Several arterial access closure devices are currently available for use. Each device utilizes a unique mechanism to obtain hemostasis with a goal of diminishing post-procedural bleeding and reducing procedure time. Patient-specific risk factors and method of hemostasis should be considered to reduce bleeding risk.


Vascular access Angiography Transradial access Venography Closure devices 


  1. 1.
    Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953;39(5):368–76.CrossRefPubMedGoogle Scholar
  2. 2.
    Irani F, Kumar S, Colyer WR Jr. Common femoral artery access techniques: a review. J Cardiovasc Med (Hagerstown). 2009;10(7):517–22.CrossRefGoogle Scholar
  3. 3.
    Rupp SB, Vogelzang RL, Nemcek AA Jr, Yungbluth MM. Relationship of the inguinal ligament to pelvic radiographic landmarks: anatomic correlation and its role in femoral arteriography. J Vasc Interv Radiol. 1993;4(3):409–13.CrossRefPubMedGoogle Scholar
  4. 4.
    Dudeck O, Teichgraeber U, Podrabsky P, Lopez Haenninen E, Soerensen R, Ricke JA. Randomized trial assessing the value of ultrasound-guided puncture of the femoral artery for interventional investigations. Int J Cardiovasc Imaging. 2004;20(5):363–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Kalish J, Eslami M, Gillespie D, Schermerhorn M, Rybin D, Doros G, et al. Routine use of ultrasound guidance in femoral arterial access for peripheral vascular intervention decreases groin hematoma rates. J Vasc Surg. 2015;61(5):1231–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Sobolev M, Slovut DP, Lee Chang A, Shiloh AL, Eisen LA. Ultrasound-guided catheterization of the femoral artery: a systematic review and meta-analysis of randomized controlled trials. J Invasive Cardiol. 2015;27(7):318–23.PubMedGoogle Scholar
  7. 7.
    Sharma PS, Padala SK, Gunda S, Koneru JN, Ellenbogen KA. Vascular complications during catheter ablation of cardiac arrythmias: a comparison between vascular ultrasound guided access and conventional vascular access. J Cardiovasc Electrophysiol. 2016;27:1160.CrossRefPubMedGoogle Scholar
  8. 8.
    Hildick-Smith DJ, Ludman PF, Lowe MD, Stephens NG, Harcombe AA, Walsh JT, et al. Comparison of radial versus brachial approaches for diagnostic coronary angiography when the femoral approach is contraindicated. Am J Cardiol. 1998;81(6):770–2.CrossRefPubMedGoogle Scholar
  9. 9.
    Eichhofer J, Horlick E, Ivanov J, Seidelin PH, Ross JR, Ing D, et al. Decreased complication rates using the transradial compared to the transfemoral approach in percutaneous coronary intervention in the era of routine stenting and glycoprotein platelet IIb/IIIa inhibitor use: a large single-center experience. Am Heart J. 2008;156(5):864–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Handlogten KS, Wilson GA, Clifford L, Nuttall GA, Kor DJ. Brachial artery catheterization: an assessment of use patterns and associated complications. Anesth Analg. 2014;118(2):288–95.CrossRefPubMedGoogle Scholar
  11. 11.
    Parviz Y, Rowe R, Vijayan S, Iqbal J, Morton AC, Grech ED, et al. Percutaneous brachial artery access for coronary artery procedures: feasible and safe in the current era. Cardiovasc Revasc Med. 2015;16(8):447–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Campeau L. Percutaneous radial artery approach for coronary angiography. Catheter Cardiovasc Diagn. 1989;16(1):3–7.CrossRefGoogle Scholar
  13. 13.
    Barbeau GR, Arsenault F, Dugas L, Simard S, Lariviere MM. Evaluation of the ulnopalmar arterial arches with pulse oximetry and plethysmography: comparison with the Allen's test in 1010 patients. Am Heart J. 2004;147(3):489–93.CrossRefPubMedGoogle Scholar
  14. 14.
    Fischman AM, Swinburne NC, Patel RSA. Technical guide describing the use of Transradial access technique for endovascular interventions. Tech Vasc Interv Radiol. 2015;18(2):58–65.CrossRefPubMedGoogle Scholar
  15. 15.
    Tang L, Wang F, Li Y, Zhao L, Xi H, Guo Z, et al. Ultrasound guidance for radial artery catheterization: an updated meta-analysis of randomized controlled trials. PLoS One. 2014;9(11):e111527.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rathore S, Stables RH, Pauriah M, Hakeem A, Mills JD, Palmer ND, et al. Impact of length and hydrophilic coating of the introducer sheath on radial artery spasm during transradial coronary intervention: a randomized study. JACC Cardiovasc Interv. 2010;3(5):475–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Mitchell MD, Hong JA, Lee BY, Umscheid CA, Bartsch SM, Don CW. Systematic review and cost-benefit analysis of radial artery access for coronary angiography and intervention. Circ Cardiovasc Qual Outcomes. 2012;5(4):454–62.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Posham R, Biederman DM, Patel RS, Kim E, Tabori NE, Nowakowski FS, et al. Transradial approach for noncoronary interventions: a single-center review of safety and feasibility in the first 1,500 cases. J Vasc Interv Radiol. 2016;27(2):159–66.CrossRefPubMedGoogle Scholar
  19. 19.
    Yoo BS, Yoon J, Ko JY, Kim JY, Lee SH, Hwang SO, et al. Anatomical consideration of the radial artery for transradial coronary procedures: arterial diameter, branching anomaly and vessel tortuosity. Int J Cardiol. 2005;101(3):421–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Hibbert B, Simard T, Wilson KR, Hawken S, Wells GA, Ramirez FD, et al. Transradial versus transfemoral artery approach for coronary angiography and percutaneous coronary intervention in the extremely obese. JACC Cardiovasc Interv. 2012;5(8):819–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Bertrand OF, Belisle P, Joyal D, Costerousse O, Rao SV, Jolly SS, et al. Comparison of transradial and femoral approaches for percutaneous coronary interventions: a systematic review and hierarchical Bayesian meta-analysis. Am Heart J. 2012;163(4):632–48.CrossRefPubMedGoogle Scholar
  22. 22.
    Hamon M, Gomes S, Clergeau MR, Fradin S, Morello R, Hamon M. Risk of acute brain injury related to cerebral microembolism during cardiac catheterization performed by right upper limb arterial access. Stroke. 2007;38(7):2176–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Dudrick S, Masland W, Mishkin M. Brachial plexus injury following axillary artery puncture. Further comments on management. Radiology. 1967;88(2):271–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Gur S, Oguzkurt L, Gurel K, Tekbas G, Onder H. US-guided retrograde tibial artery puncture for recanalization of complex infrainguinal arterial occlusions. Diagn Interv Radiol. 2013;19(2):134–40.PubMedGoogle Scholar
  25. 25.
    Palena LM, Manzi M. Antegrade pedal approach for recanalizing occlusions in the opposing circulatory pathway of the foot when a retrograde puncture is not possible. J Endovasc Ther. 2014;21(6):775–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Binkert CA, Alencar H, Singh J, Baum RA. Translumbar type II endoleak repair using angiographic CT. J Vasc Interv Radiol. 2006;17(8):1349–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327(7411):361.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Knutstad K, Hager B, Hauser M. Radiologic diagnosis and management of complications related to central venous access. Acta Radiol. 2003;44(5):508–16.CrossRefPubMedGoogle Scholar
  29. 29.
    Kato F, Sato Y, Yuasa N, Abo D, Sakuhara Y, Oyama N, et al. Reduction of bed rest time after transfemoral noncardiac angiography from 4 hours to 2 hours: a randomized trial and a one-arm study. J Vasc Interv Radiol. 2009;20(5):587–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Amin FR, Yousufuddin M, Stables R, Shamim W, Al-Nasser F, Coats AJ, et al. Femoral haemostasis after transcatheter therapeutic intervention: a prospective randomised study of the angio-seal device vs. the femostop device. Int J Cardiol. 2000;76(2–3):235–40.CrossRefPubMedGoogle Scholar
  31. 31.
    Pancholy S, Coppola J, Patel T, Roke-Thomas M. Prevention of radial artery occlusion-patent hemostasis evaluation trial (PROPHET study): a randomized comparison of traditional versus patency documented hemostasis after transradial catheterization. Catheter Cardiovasc Interv. 2008;72(3):335–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Rijkée MP, Statius van Eps RG, Wever JJ, van Overhagen H, van Dijk LC, Knippenberg B. Predictors of failure of closure in percutaneous EVAR using the Prostar XL percutaneous vascular surgery device. Eur J Vasc Endovasc Surg. 2015;49(1):45–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Schulz-Schupke S, Helde S, Gewalt S, Ibrahim T, Linhardt M, Haas K, et al. Comparison of vascular closure devices vs manual compression after femoral artery puncture: the ISAR-CLOSURE randomized clinical trial. JAMA. 2014;312(19):1981–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Robertson L, Andras A, Colgan F, Jackson R. Vascular closure devices for femoral arterial puncture site haemostasis. Cochrane Database Syst Rev. 2016;3:CD009541.PubMedGoogle Scholar
  35. 35.
    Resnic FS, Majithia A, Marinac-Dabic D, Robbins S, Ssemaganda H, Hewitt K, et al. Registry-based prospective, active surveillance of medical-device safety. N Engl J Med. 2017;376(6):526–35.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vivian Lee Bishay
    • 1
  • Ross B. Ingber
    • 2
  • Paul J. O’Connor
    • 1
  • Aaron M. Fischman
    • 3
    Email author
  1. 1.Divisions of Interventional RadiologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.SUNY Downstate Medical Center, College of MedicineBrooklynUSA
  3. 3.Department of RadiologyIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations