Advertisement

Simulation Training in Interventional Radiology

  • Gabriel Bartal
  • John H. Rundback
Chapter

Abstract

Medical education and training are the foundation of good clinical practice; in this regard, simulation and virtual training machinery now seek to facilitate increased task proficiency to improve patient safety, reduce medical errors, and enhance professional communication and team management skills. IR simulation is a safe, and well-established training modality which offers a huge number of scenarios (US guidance, biopsies, drainages, variety of endovascular interventions, endovascular stroke management and more) for practicing a wide array of procedural and non-procedural skills and has a potential to revolutionize clinical skills training in IR. In the future, complex procedures could be evaluated by virtual and augmented reality, and in some cases could be followed by 3D printing of models for rehearsal in order to find patient-specific, optimal technique.

Keywords

Medical Simulation Training Patient-Specific Simulation Medical Education Interventional Radiology 

References

  1. 1.
    Desser TS. Simulation-based training: the next revolution in radiology education? JACR. 2007;4(11):816–24.PubMedGoogle Scholar
  2. 2.
    Gould D, Patel A, Becker G, Connors B, Cardella J, Dawson S, et al. SIR/RSNA/CIRSE joint medical simulation task force strategic plan: executive summary. Cardiovasc Intervent Radiol. 2007;30(4):551–4.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Center for Devices and Radiological Health, Medical Devices Advisory Committee, Circulatory System Devices Panel meeting 2004. Available at: http://www.fda.gov/ohrms/dockets/ac/04/transcripts/4033t1.htm. Accessed 1 Jan 2016.
  4. 4.
    Holland EG, Degruy FV. Drug-induced disorders. Am Fam Physician. 1997;56(7):1781–8.PubMedGoogle Scholar
  5. 5.
    Top 10 death causes, IOM, 99 2015. www.who.int/mediacentre/factsheets/fs310/en/.
  6. 6.
    Health Grades, Inc. Patient Safety in American Hospitals. 2004.Google Scholar
  7. 7.
    Rodriguez-Paz JM, Kennedy M, Salas E, Wu AW, Sexton JB, Hunt EA, et al. Beyond “see one, do one, teach one”: toward a different training paradigm. Qual Saf Health Care. 2009;18(1):63–8.PubMedGoogle Scholar
  8. 8.
    Hunta A, Ristolainena A, Ross P, Öpika R, Krummeb A, Kruusmaa M. Low cost anatomically realistic renal biopsy phantoms for interventional radiology trainees. Eur J Radiol. 2013;82:594–600.CrossRefGoogle Scholar
  9. 9.
    Dawson S. Procedural simulation: a primer. Radiology. 2006;241(1):17–25.CrossRefPubMedGoogle Scholar
  10. 10.
    Neequaye SK, Aggarwal R, Van Herzeele I, Darzi A, Cheshire NJ. Endovascular skills training and assessment. J Vasc Surg. 2007;46(5):1055–64.CrossRefPubMedGoogle Scholar
  11. 11.
    Mendiratta-Lala M, Williams T, de Quadros N, Bonnett J, Mendiratta V. The use of a simulation center to improve resident proficiency in performing ultrasound-guided procedures. Acad Radiol. 2010;17(4):535–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Andreatta P, Chen Y, Marsh M, Cho K. Simulation-based training improves applied clinical placement of ultrasound-guided PICCs. Support Care Cancer. 2011;19(4):539–43.CrossRefPubMedGoogle Scholar
  13. 13.
    Berry M, Lystig T, Beard J, Klingestierna H, Reznick R, Lonn L. Porcine transfer study: virtual reality simulator training compared with porcine training in endovascular novices. Cardiovasc Intervent Radiol. 2007;30(3):455–61.CrossRefPubMedGoogle Scholar
  14. 14.
    Johnson SJ, Guediri SM, Kilkenny C, Clough PJ. Development and validation of a virtual reality simulator: human factors input to interventional radiology training. Hum Factors. 2011;53(6):612–25.CrossRefPubMedGoogle Scholar
  15. 15.
    Aggarwal R, Black SA, Hance JR, Darzi A, Cheshire NJ. Virtual reality simulation training can improve inexperienced surgeons’ endovascular skills. Eur J Vasc Endovasc Surg. 2006;31(6):588–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Patel AA, Gould DA. Simulators in interventional radiology training and evaluation: a paradigm shift is on the horizon. JVIR. 2006;17(11 Pt2):S163–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Chaer RA, Derubertis BG, Lin SC, Bush HL, Karwowski JK, Birk D, et al. Simulation improves resident performance in catheter based intervention: results of a randomized, controlled study. Ann Surg. 2006;244(3):343–52.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Glaiberman CB, Jacobs B, Street M, Duncan JR, Scerbo MW, Pilgrim TK. Simulation in training: one-year experience using an efficiency index to assess interventional radiology fellow training status. JVIR. 2008;19(9):1366–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee JT, Qiu M, Teshome M, Raghavan SS, Tedesco MM, Dalman RL. The utility of endovascular simulation to improve technical performance and stimulate continued interest of preclinical medical students in vascular surgery. J Surg Edu. 2009;66(6):367–73.CrossRefGoogle Scholar
  20. 20.
    Dayal R, Faries PL, Lin SC, Bernheim J, Hollenbeck S, DeRubertis B, et al. Computer simulation as a component of catheter-based training. J Vasc Surg. 2004;40(6):1112–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Powell DK, Jamison DK, Silberzweig JE. An endovascular simulation exercise among radiology residents: comparison of simulation performance with and without practice. Clin Imaging. 2015;39(6):1080–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Willaert WI, Aggarwal R, Daruwalla F, Van Herzeele I, Darzi AW, Vermassen FE, et al. Simulated procedure rehearsal is more effective than a preoperative generic warm-up for endovascular procedures. Ann Surg. 2012;255(6):1184–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Willaert W, Aggarwal R, Harvey K, Cochennec F, Nestel D, Darzi A, et al. Efficient implementation of patient-specific simulated rehearsal for the carotid artery stenting procedure: part-task rehearsal. Eur J Vasc Endovasc Surg. 2011;42(2):158–66.CrossRefPubMedGoogle Scholar
  24. 24.
    Willaert WI, Aggarwal R, Van Herzeele I, O’Donoghue K, Gaines PA, Darzi AW, et al. Patient-specific endovascular simulation influences interventionalists performing carotid artery stenting procedures. Eur J Vasc Endovasc Surg. 2011;41(4):492–500.CrossRefPubMedGoogle Scholar
  25. 25.
    Chang DR, Lin RP, Bowe S, Bunegin L, Weitzel EK, McMains KC, Willson T, Chen PG. Fabrication and validation of a low-cost, medium-fidelity silicone injection molded endoscopic sinus surgery simulation model. Laryngoscope. 2017;127(4):781–6. Epub ahead of print 2016 Dec 21.CrossRefPubMedGoogle Scholar
  26. 26.
    Bassil A, Rubod C, Borghesi Y, Kerbage Y, Schreiber ES, Azaïs H, Garabedian C. Operative and diagnostic hysteroscopy: a novel learning model combining new animal models and virtual reality simulation. Eur J Obstet Gynecol Reprod Biol. 2017;211:42–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Aydin A, Raison N, Khan MS, Dasgupta P, Ahmed K. Simulation-based training and assessment in urological surgery. Nat Rev Urol. 2016;13(9):503–19. Epub 2016 Aug 23.CrossRefPubMedGoogle Scholar
  28. 28.
    Desender L, Van Herzeele I, Lachat M, Duchateau J, Bicknell C, Teijink J, et al. A multicentre trial of patient specific rehearsal prior to EVAR: impact on procedural planning and team performance. Eur J VascEndovasc Surg. 2017;53(3):354–61. Epub ahead of print 2017 Jan 20CrossRefGoogle Scholar
  29. 29.
    Saratzis A, Calderbank T, Sidloff D, Bown MJ, Davies RS. Role of simulation in endovascular aneurysm repair (EVAR) training: a preliminary study. Eur J Vasc Endovasc Surg. 2017;53(2):193–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Stahlberg E, Planert M, Panagiotopoulos N, Horn M, Wiedner M, Kleemann M, et al. Pre-operative simulation of the appropriate C-arm position using computed tomography post-processing software reduces radiation and contrast medium exposure during EVAR procedures. Eur J Vasc Endovasc Surg. 2017;53(2):269–74.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim AH, Kendrick DE, Moorehead PA, Nagavalli A, Miller CP, Liu NT, et al. Endovascular aneurysm repair simulation can lead to decreased fluoroscopy time and accurately delineate the proximal seal zone. J Vasc Surg. 2016;64(1):251–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Miller GE. The assessment of clinical skills/competence/performance. Acad Med. 1990;65(9):S63–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Ahmed K, Keeling AN, Fakhry M, Ashrafian H, Aggarwal R, Naughton PA, et al. Role of virtual reality simulation in teaching and assessing technical skills in endovascular intervention. JVIR. 2010;21(1):55–66.CrossRefPubMedGoogle Scholar
  34. 34.
    Boulet JR, Murray DJ. Simulation-based assessment in anesthesiology. Anesthesiology. 2010;112(4):1041–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Bagai A, O’Brien S, Al Lawati H, Goyal P, Ball W, Grantcharov T, et al. Mentored simulation training improves procedural skills in cardiac catheterization: a randomized, controlled pilot study. Circ Cardiovasc Interv. 2012;5(5):672–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Hseino H, Nugent E, Lee MJ, Hill AD, Neary P, Tierney S, et al. Skills transfer after proficiency-based simulation training in superficial femoral artery angioplasty. Simul Health. 2012;7(5):274–81.CrossRefGoogle Scholar
  37. 37.
    Seagull FJ, Rooney DM. Filling a void: developing a standard subjective assessment tool for surgical simulation through focused review of current practices. Surgery. 2014;156(3):718–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Chew FS. Section editor’s notebook: sedation simulation. AJR. 2013;201(5):940.CrossRefPubMedGoogle Scholar
  39. 39.
    Medina LS, Racadio JM, Schwid HA. Computers in radiology. The sedation, analgesia, and contrast media computerized simulator: a new approach to train and evaluate radiologists’ responses to critical incidents. Pediatr Radiol. 2000;30(5):299–305.CrossRefPubMedGoogle Scholar
  40. 40.
    Boulet JR, Murray D. Review article: assessment in anesthesiology education. Can J Anaesth. 2012;59(2):182–92.CrossRefPubMedGoogle Scholar
  41. 41.
    Picard M, Curry N, Collins H, Soma L, Hill J. Comparison of high-fidelity simulation versus didactic instruction as a reinforcement intervention in a comprehensive curriculum for radiology trainees in learning contrast reaction management: does it matter how we refresh? Acad Radiol. 2015;22(10):1268–76.CrossRefPubMedGoogle Scholar
  42. 42.
    Bakker NH, Tanase D, Reekers JA, Grimbergen CA. Evaluation of vascular and interventional procedures with time–action analysis: a pilot study. J Vasc Intervent Radiol. 2002;13(5):483–8.CrossRefGoogle Scholar
  43. 43.
    Duncan JR, Kline B, Glaiberman CB. Analysis of simulated angiographic procedures. Part 2: extracting efficiency data from audio and video recordings. JVIR. 2007;18(4):535–44.CrossRefPubMedGoogle Scholar
  44. 44.
    Van Herzeele I, Aggarwal R, Malik I, Gaines P, Hamady M, Darzi A, et al. Validation of video-based skill assessment in carotid artery stenting. Eur J Vasc Endovasc Surg. 2009;38(1):1–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Klass D, Tam MD, Cockburn J, Williams S, Toms AP. Training on a vascular interventional simulator: an observational study. Eur Radiol. 2008;18(12):2874–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Johnson SJ, Hunt CM, Woolnough HM, Crawshaw M, Kilkenny C, Gould DA, et al. Virtual reality, ultrasound-guided liver biopsy simulator: development and performance discrimination. Br J Radiol. 2012;85(1013):555–61.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Weisz G, Devaud J, Ramee S, Reisman M, Gray W. The use of interventional cardiovascular simulation to evaluate operator performance: the carotid assessment of operator performance by the Simbionix Carotid StEnting Simulator Study (ASSESS). J Soc Simul Healthc. 2007;2(1):81.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gabriel Bartal
    • 1
  • John H. Rundback
    • 2
  1. 1.Diagnostic and Interventional Radiology, Meir Medical Center, Kfar SabaSackler Medical School, Tel Aviv UniversityTel AvivIsrael
  2. 2.Holy Name Medical Center, Interventional InstituteTeaneckUSA

Personalised recommendations