Local Tissues in Hemostasis and Platelet Review

  • Tiffany Kuang
  • Richard P. Szumita


Hemostasis is a complex physiologic state able to change rapidly depending on the needs of the organism. The hemostatic system broadly consists of three essential elements: local (vascular) tissues, platelets, and biochemical factors. In health, these three elements maintain a state of neutrality (or mild antithrombosis) to prevent pathologic intravascular clotting. When needed to stop hemorrhage at a site of injury, the hemostatic system rapidly allows for a powerful prothrombotic response at the site of injury while maintaining neutrality throughout the remainder of the organism.

Maintaining the appropriate state of hemostasis begins with the very tissues in which the blood circulates—blood vessels. Endothelium, which lines the vessels, and subendothelial structures are physiologically active in hemostasis. When uninjured and in a non-pathologic state, the endothelium allows blood to remain in a fluid state, preventing pathologic intravascular thrombosis. With vessel injury, the endothelium and subendothelial tissues are responsible for initiating the explosion of pro-hemostatic responses culminating in clotting and cessation of bleeding.

The second component of hemostasis, the platelet, also fluctuates from neutral to prothrombotic states. With hemorrhage, platelets become the essential mediators that anchor the procoagulant reactions to the site of vascular injury, leading to local thrombus formation and the cessation of bleeding.

This chapter reviews the fundamental physiology and pathophysiology of local tissues and platelets in hemostasis. This knowledge is essential for understanding diseases and management of patients with bleeding disorders attributed to local tissues and platelets and the pharmacology of current and developing antiplatelet medications.


Endothelium Subendothelium Thrombomodulin Tissue plasminogen activator Thromboxane A2 Endothelin Prostacyclin Nitric oxide Tissue factor (factor III) von Willebrand factor (vWF) Platelets Megakaryocytes Glycoprotein receptors Integrins GPIa/IIa GPIIb/IIIa GPVI GPIb/IX/V Platelet activation Platelet adhesion α-Granules Dense granules Arterial thrombus Venous thrombus 


  1. 1.
    Sabiston DC, Townsend CM. Sabiston textbook of surgery: the biological basis of modern surgical practice. 19th ed. Philadelphia, PA: Elsevier Saunders; 2012.Google Scholar
  2. 2.
    Shuman MA. Endothelial cell structure and function. In: Hoffman R, Benz Jr EZ, Edward J, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, editors. Hematology: basic principles and practice. 2nd ed. New York: Churchill Livingstone Inc.; 1995. p. 1552–65.Google Scholar
  3. 3.
    Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord. 2015;15:130.CrossRefGoogle Scholar
  4. 4.
    Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34(12):1508–12.CrossRefGoogle Scholar
  5. 5.
    Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Inc.; 2006.Google Scholar
  6. 6.
    Schror K, Braun M. Platelets as a source of vasoactive mediators. Stroke. 1990;21(12 Suppl):IV32–5.PubMedGoogle Scholar
  7. 7.
    Goto S, Hasebe T, Takagi S. Platelets: small in size but essential in the regulation of vascular homeostasis – translation from basic science to clinical medicine. Circ J. 2015;79(9):1871–81.CrossRefGoogle Scholar
  8. 8.
    Malamed SF. Handbook of local anesthesia. 5th ed. St. Louis, MO: Elsevier/Mosby; 2004.Google Scholar
  9. 9.
    Sisk AL. Vasoconstrictors in local anesthesia for dentistry. Anesth Prog. 1992;39(6):187–93.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Sisk AL. Long-acting local anesthetics in dentistry. Anesth Prog. 1992;39(3):53–60.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Leong M, Phillips LG. Wound healing. In: Townsend CM, Beauchamp RD, Evers BM, Mattox KL, editors. Sabiston textbook of surgery, the biological basis of modern surgical practice. 19th ed. Philadelphia: Elsevier Saunders; 2012. p. 151–77.CrossRefGoogle Scholar
  12. 12.
    Stucki-McCormick SU, Santiago P. The metabolic and physiologic aspects of wound healing. In: Hudson JW, editor. Oral and maxillofacial surgery clinics of North America, wound healing, vol. 8. Philadelphia: W.B. Saunders Company; 1996. p. 467–76.Google Scholar
  13. 13.
    Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–58.CrossRefGoogle Scholar
  14. 14.
    Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res. 2004;114(5–6):447–53.CrossRefGoogle Scholar
  15. 15.
    Furie B, Furie BC. Molecular and cellular biology of blood coagulation. N Engl J Med. 1992;326(12):800–6.CrossRefGoogle Scholar
  16. 16.
    Furie B, Furie BC. Molecular basis of blood coagulation. In: Hoffman R, Benz Jr EZ, Shattil S, Furie B, Cohen H, Silberstein L, editors. Hematology: basic principles and practice. 2nd ed. New York: Churchill Livingstone Inc.; 1995. p. xxix. 1919 p., 1917 p. of plates.Google Scholar
  17. 17.
    Clemetson KJ. Platelets and primary haemostasis. Thromb Res. 2012;129(3):220–4.CrossRefGoogle Scholar
  18. 18.
    Hall JE. Guyton and Hall textbook of medical physiology. 12th ed. Philadelphia: W.B. Saunders Company; 2011.Google Scholar
  19. 19.
    Lowenberg EC, Meijers JC, Levi M. Platelet-vessel wall interaction in health and disease. Neth J Med. 2010;68(6):242–51.PubMedGoogle Scholar
  20. 20.
    Thon JN, Italiano JE. Platelets: production, morphology and ultrastructure. Handb Exp Pharmacol. 2012;210:3–22.CrossRefGoogle Scholar
  21. 21.
    Bailey FR, Kelly DE, Wood RL, Enders AC. Bailey’s textbook of microscopic anatomy. 18th ed. Baltimore: Williams & Wilkins; 1984.Google Scholar
  22. 22.
    Calverly DCT, Christiane D. Platelet structure and function in hemostasis and thrombosis. In: Greer JP, Foerster J, Rodgers GM, et al., editors. Wintrobe’s clinical hematology, vol. 1. Philadelphia: Lippincott Williams & Wilkins; 2009.Google Scholar
  23. 23.
    Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev. 2011;25(4):155–67.CrossRefGoogle Scholar
  24. 24.
    Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339(1):269–80.CrossRefGoogle Scholar
  25. 25.
    Nuyttens BP, Thijs T, Deckmyn H, Broos K. Platelet adhesion to collagen. Thromb Res. 2011;127(Suppl 2):S26–9.CrossRefGoogle Scholar
  26. 26.
    Nieswandt B, Pleines I, Bender M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost. 2011;9(Suppl 1):92–104.CrossRefGoogle Scholar
  27. 27.
    Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol. 2013;35(3):254–61.CrossRefGoogle Scholar
  28. 28.
    Heemskerk JW, Mattheij NJ, Cosemans JM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost. 2013;11(1):2–16.CrossRefGoogle Scholar
  29. 29.
    Angiolillo DJ, Capodanno D, Goto S. Platelet thrombin receptor antagonism and atherothrombosis. Eur Heart J. 2010;31(1):17–28.CrossRefGoogle Scholar
  30. 30.
    Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357(24):2482–94.CrossRefGoogle Scholar
  31. 31.
    Wagner DD, Ginsburg D. Structure, biology, and genetics of von Willebrand factor. In: Hoffman R, Benz Jr EZ, Edward J, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, editors. Hematology: basic principles and practice. 2nd ed. New York: Churchill Livingstone Inc.; 1995. p. 1717–25.Google Scholar
  32. 32.
    Andrews RK, Gardiner EE, Shen Y, Whisstock JC, Berndt MC. Glycoprotein Ib-IX-V. Int J Biochem Cell Biol. 2003;35(8):1170–4.CrossRefGoogle Scholar
  33. 33.
    Wang Y, Sakuma M, Chen Z, et al. Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury. Circulation. 2005;112(19):2993–3000.PubMedGoogle Scholar
  34. 34.
    Rivera J, Lozano ML, Navarro-Nunez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica. 2009;94(5):700–11.CrossRefGoogle Scholar
  35. 35.
    Inoue O, Suzuki-Inoue K, Ozaki Y. Redundant mechanism of platelet adhesion to laminin and collagen under flow: involvement of von Willebrand factor and glycoprotein Ib-IX-V. J Biol Chem. 2008;283(24):16279–82.CrossRefGoogle Scholar
  36. 36.
    Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62(4):489–96.CrossRefGoogle Scholar
  37. 37.
    Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6):638–46.CrossRefGoogle Scholar
  38. 38.
    Freymiller EG, Aghaloo TL. Platelet-rich plasma: ready or not? J Oral Maxillofac Surg. 2004;62(4):484–8.CrossRefGoogle Scholar
  39. 39.
    Slapnicka J, Fassmann A, Strasak L, Augustin P, Vanek J. Effects of activated and nonactivated platelet-rich plasma on proliferation of human osteoblasts in vitro. J Oral Maxillofac Surg. 2008;66(2):297–301.CrossRefGoogle Scholar
  40. 40.
    Lopez JA, Chen J. Pathophysiology of venous thrombosis. Thromb Res. 2009;123(Suppl 4):S30–4.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tiffany Kuang
    • 1
  • Richard P. Szumita
    • 2
    • 3
  1. 1.Oral and Maxillofacial Surgery ResidentSt. Joseph’s University Medical CenterPatersonUSA
  2. 2.Department of Dentistry/Oral and Maxillofacial SurgerySt. Joseph’s University Medical CenterPatersonUSA
  3. 3.Private PracticeLittle FallsUSA

Personalised recommendations