Advertisement

Cardiovascular Risks of Impaired Fertility and Assisted Reproductive Therapy

  • Ki Park
  • Carl J. Pepine
Chapter

Abstract

Pregnancy history is important in assessing cardiovascular (CV) risk in women. Due to the tremendous changes that occur during pregnancy with regard to hemodynamic and metabolic alterations, pregnancy is often referred to as a stress test, potentially unmasking conditions that can increase CV risk in women, such as pre-eclampsia, gestational diabetes, and gestational hypertension. Adverse pregnancy outcomes also include neonatal outcomes that increase maternal CV risk, such as intrauterine growth restriction and preterm birth. These associations indicate that the milieu under which children are carried to term influences not only the child but serves as a risk marker for future maternal health. Similarly, emerging evidence suggests that infertility conditions and therapies to improve fertility may increase maternal long-term CV risk. Study and discussion of such topics is important, as CV disease remains the leading cause of death in women.

Keywords

Cardiovascular disease Risk Pregnancy history Infertility Assisted reproductive technology 

References

  1. 1.
    Martin AS, Monsour M, Kissin DM, et al. Trends in severe maternal morbidity after assisted reproductive technology in the United States, 2008–2012. Obstet Gynecol. 2016;127(1):59–66.CrossRefPubMedGoogle Scholar
  2. 2.
    Pepine CJ, Park K. Fertility therapy and long-term cardiovascular risk: raising more questions than answers? J Am Coll Cardiol. 2017;70(10):1214–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Moran LJ, Misso ML, Wild RA, et al. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347–63.CrossRefPubMedGoogle Scholar
  4. 4.
    Sirmans SM, Parish RC, Blake S, et al. Epidemiology and comorbidities of polycystic ovary syndrome in an indigent population. J Investig Med. 2014;62(6):868–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Legro RS, Kunselman AR, Dunaif A. Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome. Am J Med. 2001;111(8):607–13.CrossRefPubMedGoogle Scholar
  6. 6.
    Vgontzas AN, Legro RS, Bixler EO, et al. Polycystic ovary syndrome is associated with obstructive sleep apnea and daytime sleepiness: role of insulin resistance. J Clin Endocrinol Metab. 2001;86(2):517–20.PubMedGoogle Scholar
  7. 7.
    Chang AY, Oshiro J, Ayers C, et al. Influence of race/ethnicity on cardiovascular risk factors in polycystic ovary syndrome, the Dallas Heart Study. Clin Endocrinol. 2016;85(1):92–9.CrossRefGoogle Scholar
  8. 8.
    Boulman N, Levy Y, Leiba R, et al. Increased C-reactive protein levels in the polycystic ovary syndrome: a marker of cardiovascular disease. J Clin Endocrinol Metab. 2004;89(5):2160–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Talbott EO, Guzick DS, Sutton-Tyrrell K, et al. Evidence for association between polycystic ovary syndrome and premature carotid atherosclerosis in middle-aged women. Arterioscler Thromb Vasc Biol. 2000;20(11):2414–21.CrossRefPubMedGoogle Scholar
  10. 10.
    Hu FB, Grodstein F, Hennekens CH, et al. Age at natural menopause and risk of cardiovascular disease. Arch Intern Med. 1999;159(10):1061–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Jacobsen BK, Knutsen SF, Fraser GE. Age at natural menopause and total mortality and mortality from ischemic heart disease: the Adventist Health Study. J Clin Epidemiol. 1999;52(4):303–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Snowdon DA. Early natural menopause and the duration of postmenopausal life. Findings from a mathematical model of life expectancy. J Am Geriatr Soc. 1990;38(4):402–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Snowdon DA, Kane RL, Beeson WL, et al. Is early natural menopause a biologic marker of health and aging? Am J Public Health. 1989;79(6):709–14.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kalantaridou SN, Naka KK, Papanikolaou E, et al. Impaired endothelial function in young women with premature ovarian failure: normalization with hormone therapy. J Clin Endocrinol Metab. 2004;89(8):3907–13.CrossRefPubMedGoogle Scholar
  15. 15.
    Cooper GS, Sandler DP. Age at natural menopause and mortality. Ann Epidemiol. 1998;8(4):229–35.CrossRefPubMedGoogle Scholar
  16. 16.
    van der Schouw YT, van der Graaf Y, Steyerberg EW, et al. Age at menopause as a risk factor for cardiovascular mortality. Lancet. 1996;347(9003):714–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Langrish JP, Mills NL, Bath LE, et al. Cardiovascular effects of physiological and standard sex steroid replacement regimens in premature ovarian failure. Hypertension. 2009;53(5):805–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Mu F, Rich-Edwards J, Rimm EB, et al. Endometriosis and risk of coronary heart disease. Circ Cardiovasc Qual Outcomes. 2016;9(3):257–64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gunby J, Bissonnette F, Librach C, et al. Assisted reproductive technologies (ART) in Canada: 2007 results from the Canadian ART Register. Fertil Steril. 2011;95(2):542–547.e541–510.CrossRefPubMedGoogle Scholar
  21. 21.
    Talaulikar VS, Arulkumaran S. Reproductive outcomes after assisted conception. Obstet Gynecol Surv. 2012;67(9):566–83.CrossRefPubMedGoogle Scholar
  22. 22.
    Belanoff C, Declercq ER, Diop H, et al. Severe maternal morbidity and the use of assisted reproductive technology in Massachusetts. Obstet Gynecol. 2016;127(3):527–34.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang ET, Ozimek JA, Greene N, et al. Impact of fertility treatment on severe maternal morbidity. Fertil Steril. 2016;106(2):423–6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Söderström-Anttila V, Tiitinen A, Foudila T, et al. Obstetric and perinatal outcome after oocyte donation: comparison with in-vitro fertilization pregnancies. Hum Reprod. 1998;13(2):483–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Wiggins DA, Main E. Outcomes of pregnancies achieved by donor egg in vitro fertilization—a comparison with standard in vitro fertilization pregnancies. Am J Obstet Gynecol. 2005;192(6):2002–6. discussion 2006–2008CrossRefPubMedGoogle Scholar
  26. 26.
    Udell JA, Lu H, Redelmeier DA. Long-term cardiovascular risk in women prescribed fertility therapy. J Am Coll Cardiol. 2013;62(18):1704–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Ben-Yaakov RD, Kessous R, Shoham-Vardi I, et al. Fertility treatments in women who become pregnant and carried to viability, and the risk for long-term maternal cardiovascular morbidity. Am J Perinatol. 2016;33(14):1388–93.CrossRefPubMedGoogle Scholar
  28. 28.
    Nastri CO, Ferriani RA, Rocha IA, et al. Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet. 2010;27(2–3):121–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ceelen M, van Weissenbruch MM, Vermeiden JP, et al. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab. 2008;93(5):1682–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Scherrer U, Rimoldi SF, Rexhaj E, et al. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation. 2012;125(15):1890–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Valenzuela-Alcaraz B, Crispi F, Bijnens B, et al. Assisted reproductive technologies are associated with cardiovascular remodeling in utero that persists postnatally. Circulation. 2013;128(13):1442–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Xu GF, Zhang JY, Pan HT, et al. Cardiovascular dysfunction in offspring of ovarian-hyperstimulated women and effects of estradiol and progesterone: a retrospective cohort study and proteomics analysis. J Clin Endocrinol Metab. 2014;99(12):E2494–503.CrossRefPubMedGoogle Scholar
  33. 33.
    Reynolds LP, Borowicz PP, Palmieri C, et al. Placental vascular defects in compromised pregnancies: effects of assisted reproductive technologies and other maternal stressors. Adv Exp Med Biol. 2014;814:193–204.CrossRefPubMedGoogle Scholar
  34. 34.
    Roos-Hesselink JW, Johnson MR. Does fertility therapy hamper cardiovascular outcome? J Am Coll Cardiol. 2013;62(18):1713–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Udell JA, Lu H, Redelmeier DA. Failure of fertility therapy and subsequent adverse cardiovascular events. CMAJ. 2017;189(10):E391–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Parikh NI, Cnattingius S, Mittleman MA, et al. Subfertility and risk of later life maternal cardiovascular disease. Hum Reprod. 2012;27(2):568–75.CrossRefPubMedGoogle Scholar
  37. 37.
    Binder H, Dittrich R, Einhaus F, et al. Update on ovarian hyperstimulation syndrome: part 1—incidence and pathogenesis. Int J Fertil Womens Med. 2007;52(1):11–26.PubMedGoogle Scholar
  38. 38.
    Gonçalves PB, Ferreira R, Gasperin B, et al. Role of angiotensin in ovarian follicular development and ovulation in mammals: a review of recent advances. Reproduction. 2012;143(1):11–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Hassan E, Creatsas G, Mastorakos G, et al. Clinical implications of the ovarian/endometrial renin-angiotensin-aldosterone system. Ann N Y Acad Sci. 2000;900:107–18.CrossRefPubMedGoogle Scholar
  40. 40.
    Henriksson P, Westerlund E, Wallén H, et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilisation: cross sectional study. BMJ. 2013;346:e8632.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Morris RS, Paulson RJ. Increased angiotensin-converting enzyme activity in a patient with severe ovarian hyperstimulation syndrome. Fertil Steril. 1999;71(3):562–3.CrossRefPubMedGoogle Scholar
  42. 42.
    Vloeberghs V, Peeraer K, Pexsters A, et al. Ovarian hyperstimulation syndrome and complications of ART. Best Pract Res Clin Obstet Gynaecol. 2009;23(5):691–709.CrossRefPubMedGoogle Scholar
  43. 43.
    Oliver-Williams CT, Heydon EE, Smith GC, et al. Miscarriage and future maternal cardiovascular disease: a systematic review and meta-analysis. Heart. 2013;99(22):1636–44.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Parker DR, Lu B, Sands-Lincoln M, et al. Risk of cardiovascular disease among postmenopausal women with prior pregnancy loss: the women’s health initiative. Ann Fam Med. 2014;12(4):302–9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lawlor DA, Emberson JR, Ebrahim S, et al. Is the association between parity and coronary heart disease due to biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Findings from the British Women’s Heart and Health Study and the British Regional Heart Study. Circulation. 2003;107(9):1260–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Ness RB, Harris T, Cobb J, et al. Number of pregnancies and the subsequent risk of cardiovascular disease. N Engl J Med. 1993;328(21):1528–33.CrossRefPubMedGoogle Scholar
  47. 47.
    Parikh NI, Cnattingius S, Dickman PW, et al. Parity and risk of later-life maternal cardiovascular disease. Am Heart J. 2010;159(2):215–221.e216.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Cardiovascular Medicine, College of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Department of Cardiology, Malcom Randall VA Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleUSA

Personalised recommendations