Advertisement

Atherosclerosis and Gender-Related Differences

  • Pankaj Mathur
  • Zufeng Ding
  • Xianwei Wang
  • Mahesh Bavineni
  • Ajoe John Kattoor
  • Jawahar L. Mehta
Chapter

Abstract

Coronary artery disease (CAD) remains the leading cause of mortality and morbidity world wide. Despite significant advances in our understanding of the atherogenesis, gender related differences in CAD remain unclear. It is generally assumed that the estrogens play a protective role in women in the premenopausal age group; however, hormone replacement therapy in postmenopausal women has not led to a significant decrease in cardiovascular events. Nonetheless, subtle differences at cellular level and in the plaque morphology have been identified in women as compared with men. Recent studies have shown a different pattern of atherosclerotic changes in the distribution of vessels, morphology of lesions and microvasculature between men and women. New markers of atherosclerosis such as G protein coupled estrogen receptors, Toll-like receptors and lipoprotein(a) also exhibit different patterns in men and women. Other studies have shown that women as compared to men have poorer prognosis after STEMI and CABG. An improved understanding the gender related pathophysiology will help in improved management of CAD in women.

Keywords

Atherosclerosis Estrogens Androgens Plaque morphology 

References

  1. 1.
  2. 2.
    Duff GL, McMillan GC. Pathology of atherosclerosis. Am J Med. 1951;11(1):92–108.CrossRefPubMedGoogle Scholar
  3. 3.
    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–26.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Steinberg D. Research related to underlying mechanisms in atherosclerosis. Circulation. 1979;60(7):1559–65.CrossRefPubMedGoogle Scholar
  5. 5.
    Parthasarathy S, Quinn MT, Steinberg DI. oxidized low density lipoprotein involved in the recruitment and retention of monocyte/macrophages in the artery wall during the initiation of atherosclerosis? Basic Life Sci. 1988;49:375–80.PubMedGoogle Scholar
  6. 6.
    Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III27–32.PubMedGoogle Scholar
  7. 7.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):399–410.CrossRefGoogle Scholar
  8. 8.
    Davis KB, Chaitman B, Ryan T, Bittner V, Kennedy JW. Comparison of 15-year survival for men and women after initial medical or surgical treatment for coronary artery disease: a CASS Registry study. J Am Coll Cardiol. 1995;25:1000–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Redfors B, Angerås O, Råmunddal T, Petursson P, Haraldsson I, Dworeck C, et al. Trends in gender differences in cardiac care and outcome after acute myocardial infarction in western Sweden: A report from the Swedish Web System for Enhancement of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART). J Am Heart Assoc. 2015;4(7):pii: e001995.CrossRefGoogle Scholar
  10. 10.
    Hassan A, Chiasson M, Buth K, Hirsch G. Women have worse long-term outcomes after coronary artery bypass grafting than men. Can J Cardiol. 2005;21(9):757–62.PubMedGoogle Scholar
  11. 11.
    Koch CG, Weng YS, Zhou SX, Savino JS, Mathew JP, Hsu PH, et al.; Ischemia Research and Education Foundation; Multicenter Study of Perioperative Ischemia Research Group. Prevalence of risk factors, and not gender per se, determines short- and long-term survival after coronary artery bypass surgery. J Cardiothorac Vasc Anesth 2003;17(5):585–93.Google Scholar
  12. 12.
    Duvall WL. Cardiovascular disease in women. Mt Sinay J Med. 2003;70:293–305.Google Scholar
  13. 13.
    Vaina S, Milkas A, Crysohoou C, Stefanadis C. Coronary artery disease in women: from the yentl syndrome to contemporary treatment. World J Cardiol. 2015;7(1):10–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schaefer EJ, Lamon-Fava S, Cohn SD, et al. Effects of age, gender, and menopausal status on plasma low density lipoprotein cholesterol and apolipoprotein B levels in the Framingham Offspring Study. J Lipid Res. 1994;35:779–92.PubMedGoogle Scholar
  15. 15.
    Campos H, McNamara JR, Wilson PW, et al. Differences in low density lipoprotein subfractions and apolipoproteins in premenopausal and postmenopausal women. J Clin Endocrinol Metab. 1988;67:30–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Njolstad I, Arnesen E, Lund-Larsen PD. Smoking, serum lipids, blood pressure, and sex differences in myocardial infarction. A 12-year follow-up of the Finnmark study. Circulation. 1996;93:450–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Stokes J, Kannel WB, Wolf PA, Cupples LA, D’Agostino RB. The relative importance of selected risk factors for various manifestations of cardiovascular disease among men and women from 35 to 64 years old: 30 years of follow-up in the Framingham Study. Circulation. 1987;75:V65–73.PubMedGoogle Scholar
  18. 18.
    Mautner SL, Lin F, Mautner GC, Roberts WC. Comparison in women versus men of composition of atherosclerotic plaques in native coronary arteries and in saphenous veins used as aortocoronary conduits. J Am Coll Cardiol. 1993;21(6):1312–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation. 1998;97:2110–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93:1354–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Yahagi K, Davis HR, Arbustini E, Virmani R. Sex differences in coronary artery disease: pathological observations. Atherosclerosis. 2015;239(1):260–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Ferrante G, Nakano M, Prati F, et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation. 2010;122:2505–13.CrossRefPubMedGoogle Scholar
  23. 23.
    Kolodgie FD, Burke AP, Farb A, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22:1642–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Iqbal SN, Feit F, Mancini GB, Wood D, Patel R, Pena-Sing I, et al. Characteristics of plaque disruption by intravascular ultrasound in women presenting with myocardial infarction without obstructive coronary artery disease. Am Heart J. 2014;167(5):715–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Kardys I, Vliegenthart R, Oudkerk M, Hofman A, Witteman JC. The female advantage in cardiovascular disease: do vascular beds contribute equally? Am J Epidemiol. 2007;166(4):403–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Han SH, Bae JH, Holmes DR Jr, Lennon RJ, Eeckhout E, Barsness GW, et al. Sex differences in atheroma burden and endothelial function in patients with early coronary atherosclerosis. Eur Heart J. 2008;29(11):1359–69.CrossRefPubMedGoogle Scholar
  27. 27.
    Ruiz-García J, Lerman A, Weisz G, Maehara A, Mintz GS, Fahy M, et al. Age- and gender-related changes in plaque composition in patients with acute coronary syndrome: the PROSPECT study. EuroIntervention. 2012;8(8):929–38.CrossRefPubMedGoogle Scholar
  28. 28.
    Ann SH, De Jin C, Singh GB, Lim KH, Chung JW, Garg S, et al. Gender differences in plaque characteristics of culprit lesions in patients with ST elevation myocardial infarction. Heart Vessel. 2016;31(11):1767–75.CrossRefGoogle Scholar
  29. 29.
    Kern MJ, Bach RG, Mechem CJ, Caracciolo EA, Aguirre FV, Miller LW, et al. Variations in normal coronary vasodilatory reserve stratified by artery, gender, heart transplantation and coronary artery disease. J Am Coll Cardiol. 1996;28:1154–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Gaubitz M. Epidemiology of connective tissue disorders. Rheumatology (Oxford). 2006;45(Suppl 3):iii3–4.Google Scholar
  31. 31.
    Sun H, Mohri M, Shimokawa H, Usui M, Urakami L, Takeshita A. Coronary microvascular spasm causes myocardial ischemia in patients with vasospastic angina. J Am Coll Cardiol. 2002;39(5):847–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Mohri M, Koyanagi M, Egashira K, Tagawa H, Ichiki T, Shimokawa H, et al. Angina pectoris caused by coronary microvascular spasm. Lancet. 1998;351(9110):1165–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Reis SE, Holubkov R, Conrad Smith AJ, Kelsey SF, Sharaf BL, Reichek N, et al. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: results from the NHLBI WISE study. Am Heart J. 2001;141(5):735–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Johnson BD, Shaw LJ, Buchthal SD, Bairey Merz CN, Kim HW, Scott KN, et al. Prognosis in women with myocardial ischemia in the absence of obstructive coronary disease: results from the National Institutes of Health-National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation. 2004;109(24):2993–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Johnson BD, Shaw LJ, Pepine CJ, Reis SE, Kelsey SF, Sopko G, et al. Persistent chest pain predicts cardiovascular events in women without obstructive coronary artery disease: results from the NIH-NHLBI-sponsored Women’s Ischaemia Syndrome Evaluation (WISE) study. Eur Heart J. 2006;27(12):1408–15.CrossRefPubMedGoogle Scholar
  36. 36.
    Buchthal SD, den Hollander JA, Merz CN, Rogers WJ, Pepine CJ, Reichek N, et al. Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Engl J Med. 2000;342(12):829–35.CrossRefPubMedGoogle Scholar
  37. 37.
    Mygind ND, Michelsen MM, Pena A, Frestad D, Dose N, Aziz A, et al. Coronary microvascular function and cardiovascular risk factors in women with angina pectoris and no obstructive coronary artery disease: the iPOWER study. J Am Heart Assoc. 2016;5(3):e003064.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Harder DR, Coulson PB. Estrogen receptors and effects of estrogen on membrane electrical properties of coronary vascular smooth muscle. J Cell Physiol. 1979;100:375–82.CrossRefPubMedGoogle Scholar
  39. 39.
    Sudhir K, Chou TM, Mullen WL, Hausmann D, Collins P, Yock PG, et al. Mechanisms of estrogen-induced vasodilation: in vivo studies in canine coronary conductance and resistance arteries. J Am Coll Cardiol. 1995;26(3):807–14.CrossRefPubMedGoogle Scholar
  40. 40.
    Robins SJ, Fasulo JM, Patton GM, Schaefer EJ, Smith DE, Ordovas JM. Gender differences in the development of hyperlipemia and atherosclerosis in hybrid hamsters. Metabolism. 1995;44(10):1326–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Wilson TA, Nicolosi RJ, Lawton CW, Babiak J. Gender differences in response to a hypercholesterolemic diet in hamsters: effects on plasma lipoprotein cholesterol concentrations and early aortic atherosclerosis. Atherosclerosis. 1999;146(1):83–91.CrossRefPubMedGoogle Scholar
  42. 42.
    Hayashi T, Fukuto JM, Ignarro LJ, Chaudhuri G. Gender differences in atherosclerosis: possible role of nitric oxide. J Cardiovasc Pharmacol. 1995;26(5):792–802.CrossRefPubMedGoogle Scholar
  43. 43.
    Hulley S, Grandy D, Bush T, Furberk C, Herrington D, Riggs B, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA. 1998;280:605–12.CrossRefPubMedGoogle Scholar
  44. 44.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg CH, Hutchison F, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized control trial. JAMA. 2002;288:321–33.CrossRefPubMedGoogle Scholar
  45. 45.
    Maggi A, Cignarella A, Brusadelli A, Bolego C, Pinna C, Puglisi L. Diabetes undermines estrogen control of inducible nitric oxide synthase function in rat aortic smooth muscle cells through overexpression of estrogen receptor-beta. Circulation. 2003;108(2):211–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Nuedling S, Karas RH, Mendelsohn ME, Katzenellenbogen JA, Katzenellenbogen BS, Meyer R, et al. Activation of estrogen receptor beta is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes. FEBS Lett. 2001;502(3):103–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Huang A, Kaley G. Gender-specific regulation of cardiovascular function: estrogen as key player. Microcirculation. 2004;11(1):9–38.CrossRefPubMedGoogle Scholar
  48. 48.
    Wagner AH, Schroeter MR, Hecker M. 17beta-e stradiol inhibition of NADPH oxidase expression in human endothelial cells. FASEB J. 2001;15(12):2121–30.CrossRefPubMedGoogle Scholar
  49. 49.
    Huang A, Sun D, Koller A, Kaley G. Gender difference in myogenic tone of rat arterioles is due to estrogen-induced, enhanced release of NO. Am J Phys. 1997;272:H1804–9.CrossRefGoogle Scholar
  50. 50.
    Huang A, Wu Y, Sun D, Koller A, Kaley G. Effect of estrogen on flow-induced dilation in NO deficiency: Roles of prostaglandins and EDHF. J Appl Physiol (1985). 2001;91(6):2561–6.CrossRefGoogle Scholar
  51. 51.
    Koller A, Sun D, Huang A, Kaley G. Corelease of nitric oxide and prostaglandins mediates flow-dependent dilation of rat gracilis muscle arterioles. Am J Phys. 1994;267(1 Pt 2):H326–32.Google Scholar
  52. 52.
    Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol. 2002;80(2):231–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ERA. transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307(5715):1625–30.CrossRefPubMedGoogle Scholar
  54. 54.
    Murphy E, Steenbergen C. Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res. 2007;75:478–86.CrossRefPubMedGoogle Scholar
  55. 55.
    Haas E, Bhattacharya I, Brailoiu E, Damjanović M, Brailoiu GC, Gao X, et al. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ Res. 2009;104(3):288–91.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Meyer MR, Fredette NC, Howard TA, Hu C, Ramesh C, Daniel C, et al. G protein-coupled estrogen receptor protects from atherosclerosis. Sci Rep. 2014;4:7564.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Li Z, Cheng L, Liang H, Duan W, Hu J, Zhi W, Yang J, Liu Z, Zhao M, Liu JGPER. inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction. Eur J Cell Biol. 2016;95(2):100–13.CrossRefPubMedGoogle Scholar
  58. 58.
    Alencar AK, Montes GC, Montagnoli T, Silva AM, Martinez ST, Fraga AG, Wang H, Groban L, Sudo RT, Zapata-Sudo G. Activation of GPER ameliorates experimental pulmonary hypertension in male rats. Eur J Pharm Sci. 2017;97:208–17.CrossRefPubMedGoogle Scholar
  59. 59.
    Selvin E, Feinleib M, Zhang L, et al. Androgens and diabetes in men: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care. 2007;30(2):234–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Hak AE, Witteman JC, de Jong FH, Geerlings MI, Hofman A, Pols HA. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. J Clin Endocrinol Metab. 2002;87(8):3632–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Corona G, Rastrelli G, Monami M, Guay A, Buvat J, Sforza A, Forti G, Mannucci E, Maggi M. Hypogonadism as a risk factor for cardiovascular mortality in men: a meta-analytic study. Eur J Endocrinol. 2011;165(5):687–701.CrossRefPubMedGoogle Scholar
  62. 62.
    Rovira-Llopis S, Bañuls C, de Marañon AM, Diaz-Morales N, Jover A, Garzon S, Rocha M, Victor VM, Hernandez-Mijares A. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free Radic Biol Med. 2017;108:155–62.CrossRefPubMedGoogle Scholar
  63. 63.
    Hu X, Rui L, Zhu T, Xia H, Yang X, Wang X, Liu H, Lu Z, Jiang H. Low testosterone level in middle-aged male patients with coronary artery disease. Eur J Intern Med. 2011;22(6):e133–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Rosano GM, Sheiban I, Massaro R, Pagnotta P, Marazzi G, Vitale C, Mercuro G, Volterrani M, Aversa A, Fini M. Low testosterone levels are associated with coronary artery disease in male patients with angina. Int J Impot Res. 2007;19(2):176–82.CrossRefPubMedGoogle Scholar
  65. 65.
    Kloner RA, Carson C 3rd, Dobs A, Kopecky S, Mohler ER 3rd. Testosterone and cardiovascular disease. J Am Coll Cardiol. 2016;67(5):545–57.CrossRefPubMedGoogle Scholar
  66. 66.
    Ng MK, Quinn CM, McCrohon JA, Nakhla S, Jessup W, Handelsman DJ, et al. Androgens up-regulate atherosclerosis-related genes in macrophages from males but not females: molecular insights into gender differences in atherosclerosis. J Am Coll Cardiol. 2003;42(7):1306–13.CrossRefPubMedGoogle Scholar
  67. 67.
    McCrohon JA, Death AK, Nakhla N, et al. Androgen receptor expression is greater in macrophages from male than from female donors. A sex difference with implications for atherogenesis. Circulation. 2000;101(3):224–6.CrossRefGoogle Scholar
  68. 68.
    Ling S, Dai A, Williams MR, Myles K, et al. Testosterone (T) enhances apoptosis-related damage in human vascular endothelial cells. Endocrinology. 2002;143(3):1119–25.CrossRefPubMedGoogle Scholar
  69. 69.
    Wang M, Tsai BM, Kher A, Baker LB, Wairiuko GM, Meldrum DR. Role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2005;288(1):H221–6. Epub 2004 Sep 16CrossRefPubMedGoogle Scholar
  70. 70.
    Huang C, Gu H, Zhang W, Herrmann JL, Wang M. Testosterone-down-regulated Akt pathway during cardiac ischemia/reperfusion: a mechanism involving BAD, Bcl-2 and FOXO3a. J Surg Res. 2010;164(1):e1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Cavasin MA, Tao ZY, Yu AL, Yang XP. Testosterone enhances early cardiac remodeling after myocardial infarction, causing rupture and degrading cardiac function. Am J Physiol Heart Circ Physiol. 2006;290(5):H2043–50.CrossRefGoogle Scholar
  72. 72.
    Crisostomo PR, Wang M, Wairiuko GM, Morrell ED, Meldrum DR. Brief exposure to exogenous testosterone increases death signaling and adversely affects myocardial function after ischemia. Am J Physiol Regul Integr Comp Physiol. 2006;290(5):R1168–74.CrossRefPubMedGoogle Scholar
  73. 73.
    Rettew JA, Huet-Hudson YM, Marriott I. Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol Reprod. 2008;78(3):432–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Qasim AN, Martin SS, Mehta NN, Wolfe ML, Park J, Schwartz S, et al. Lipoprotein(a) is strongly associated with coronary artery calcification in type-2 diabetic women. Int J Cardiol. 2011;150(1):17–21.CrossRefPubMedGoogle Scholar
  75. 75.
    Gu C, Wang F, Hou Z, Lv B, Wang Y, Cong X, Chen X. Sex-related differences in serum matrix metalloproteinase-9 screening non-calcified and mixed coronary atherosclerotic plaques in outpatients with chest pain. Heart Vessel. 2017;32(12):1424–31.  https://doi.org/10.1007/s00380-017-1014-3. [Epub ahead of print]CrossRefGoogle Scholar
  76. 76.
    Gremmel T, Kopp CW, Eichelberger B, Koppensteiner R, Panzer S. Sex differences of leukocyte-platelet interactions and on-treatment platelet reactivity in patients with atherosclerosis. Atherosclerosis. 2014;237(2):692–5.CrossRefPubMedGoogle Scholar
  77. 77.
    Koupenova M, Mick E, Mikhalev E, Benjamin EJ, Tanriverdi K, Freedman JE. Sex differences in platelet toll-like receptors and their association with cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2015;35(4):1030–7.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Edfeldt K, Bennet AM, Eriksson P, Frostegård J, et al. Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infarction. Eur Heart J. 2004;25:1447–53.CrossRefPubMedGoogle Scholar
  79. 79.
    Brilakis ES, Khera A, McGuire DK, See R, Banerjee S, Murphy SA, de Lemos JA. Influence of race and sex on lipoprotein-associated phospholipase A2 levels: observations from the Dallas Heart Study. Atherosclerosis. 2008;199(1):110–5.CrossRefPubMedGoogle Scholar
  80. 80.
    Lu HT, Nordin R, Wan Ahmad WA, Lee CY, Zambahari R, Ismail O, Liew HB, Sim KH, NCVD Investigators. Sex differences in acute coronary syndrome in a multiethnic asian population: results of the malaysian national cardiovascular disease database-acute coronary syndrome (NCVD-ACS) registry. Glob Heart. 2014;9(4):381–90.CrossRefPubMedGoogle Scholar
  81. 81.
    Flink L, Mochari-Greenberger H, Mosca L. Gender differences in clinical outcomes among diabetic patients hospitalized for cardiovascular disease. Am Heart J. 2013;165(6):972–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Pankaj Mathur
    • 1
  • Zufeng Ding
    • 1
    • 2
  • Xianwei Wang
    • 1
    • 2
  • Mahesh Bavineni
    • 1
    • 2
  • Ajoe John Kattoor
    • 1
    • 2
  • Jawahar L. Mehta
    • 3
  1. 1.University of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Central Arkansas Veterans Healthcare SystemLittle RockUSA
  3. 3.Stebbins Chair in Cardiology, University of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations