Advertisement

Neurobiology of Schizophrenia: Electrophysiological Indices

  • Martha Koukkou
  • Thomas Koenig
  • Anja Bänninger
  • Kathryn Rieger
  • Laura Diaz Hernandez
  • Yuko Higuchi
  • Tomiki Sumiyoshi
  • Annarita Vignapiano
  • Giulia Maria Giordano
  • Antonella Amodio
  • Armida Mucci
Chapter

Abstract

The objective of the WPA section on Psychoneurobiology is the promotion of the integration of findings from research fields such as neurophysiology, psychology, neuropsychology and psychiatry. This chapter focuses on the importance of electroencephalographic (EEG) studies for the section’s objectives and especially for (a) the study of functional brain abnormalities related to liability to psychosis and schizophrenia pathophysiology and (b) characterization of schizophrenia psychopathological dimensions. The introduction will highlight the importance of EEG investigations in psychiatry, outlining a model of brain function, based on the notion of state-dependent information processing, and providing examples relevant to schizophrenia research. The second paragraph will summarize the current state of knowledge about resting state EEG connectivity in subjects with schizophrenia (SCZ) and draw some tentative conclusions about the possible links to the range of cognitive and behavioural abnormalities observed in these patients. The third paragraph will illustrate findings from event-related potential (ERP) studies of subjects at risk for psychosis who later develop schizophrenia-spectrum disorders. Some of the ERP parameters are proposed as biomarkers of the transition to psychosis and, if further validated, can be used to identify subjects for early interventions. The final paragraph of the chapter will summarize findings relevant to the characterization of the psychopathological dimensions of schizophrenia.

Keywords

Resting state connectivity EEG microstates Event-related potentials High risk for psychosis Schizophrenia 

References

  1. 1.
    Gasser T, Jennen-Steinmetz C, Sroka L, Verleger R, Mocks J. Development of the EEG of school-age children and adolescents. II. Topography. Electroencephalogr Clin Neurophysiol. 1988;69(2):100–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Thatcher RW, Krause PJ, Hrybyk M. Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroencephalogr Clin Neurophysiol. 1986;64(2):123–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Anokhin AP, Birbaumer N, Lutzenberger W, Nikolaev A, Vogel F. Age increases brain complexity. Electroencephalogr Clin Neurophysiol. 1996;99(1):63–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Meyer-Lindenberg A. The evolution of complexity in human brain development: an EEG study. Electroencephalogr Clin Neurophysiol. 1996;99(5):405–11.CrossRefPubMedGoogle Scholar
  5. 5.
    Koukkou M, Lehmann D. Experience-dependent brain plasticity and the normal or neurotic development of individuals. Dialogue of psychoanalysis and neurobiology: theoretical and therapeutic aspects. Athens: BETA Iatrikes Ekdosis; 2010.Google Scholar
  6. 6.
    Koukkou M, Lehmann D. Dreaming: the functional state-shift hypothesis. A neuropsychophysiological model. Br J Psychiatry. 1983;142:221–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Koukkou M, Federspiel A, Bräker E, Hug C, Kleinlogel H, Merlo MC, Lehmann D. An EEG approach to the neurodevelopmental hypothesis of schizophrenia studying schizophrenics, normal controls and adolescents. J Psychiatr Res. 2000;34(1):57–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Lehmann D, Faber PL, Galderisi S, Herrmann WM, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackermann J, Winterer G, Koenig T. EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res. 2005;138(2):141–56.  https://doi.org/10.1016/j.pscychresns.2004.05.007.CrossRefPubMedGoogle Scholar
  9. 9.
    Koenig T, Lehmann D, Merlo MC, Kochi K, Hell D, Koukkou M. A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci. 1999;249(4):205–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Berger H. Über das Elektroenzephalogramm des Menschen. Arch Psychiat Nervenkr. 1929;87:527–70.CrossRefGoogle Scholar
  11. 11.
    Shagass C. An electrophysiological view of schizophrenia. Biol Psychiatry. 1976;11(1):3–30.PubMedGoogle Scholar
  12. 12.
    Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3(2):89–97.PubMedGoogle Scholar
  13. 13.
    Van de Steen F, Faes L, Karahan E, Songsiri J, Valdes-Sosa PA, Marinazzo D. Critical comments on EEG sensor space dynamical connectivity analysis. Brain Topogr. 2016.  https://doi.org/10.1007/s10548-016-0538-7.
  14. 14.
    Haufe S, Nikulin VV, Muller KR, Nolte G. A critical assessment of connectivity measures for EEG data: a simulation study. Neuroimage. 2013;64:120–33.  https://doi.org/10.1016/j.neuroimage.2012.09.036.CrossRefPubMedGoogle Scholar
  15. 15.
    Hinkley LB, Vinogradov S, Guggisberg AG, Fisher M, Findlay AM, Nagarajan SS. Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: implications for novel approaches to treatment. Biol Psychiatry. 2011;70(12):1134–42.  https://doi.org/10.1016/j.biopsych.2011.06.029.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lehmann D, Faber PL, Pascual-Marqui RD, Milz P, Herrmann WM, Koukkou M, Saito N, Winterer G, Kochi K. Functionally aberrant electrophysiological cortical connectivities in first episode medication-naive schizophrenics from three psychiatry centers. Front Hum Neurosci. 2014;8:635.  https://doi.org/10.3389/fnhum.2014.00635.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Di Lorenzo G, Daverio A, Ferrentino F, Santarnecchi E, Ciabattini F, Monaco L, Lisi G, Barone Y, Di Lorenzo C, Niolu C, Seri S, Siracusano A. Altered resting-state EEG source functional connectivity in schizophrenia: the effect of illness duration. Front Hum Neurosci. 2015;9:234.  https://doi.org/10.3389/fnhum.2015.00234.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Andreou C, Leicht G, Nolte G, Polomac N, Moritz S, Karow A, Hanganu-Opatz IL, Engel AK, Mulert C. Resting-state theta-band connectivity and verbal memory in schizophrenia and in the high-risk state. Schizophr Res. 2015;161(2–3):299–307.  https://doi.org/10.1016/j.schres.2014.12.018.CrossRefPubMedGoogle Scholar
  19. 19.
    Shreekantiah Umesh D, Tikka SK, Goyal N, Nizamie SH, Sinha VK. Resting state theta band source distribution and functional connectivity in remitted schizophrenia. Neurosci Lett. 2016;630:199–202.  https://doi.org/10.1016/j.neulet.2016.07.055.CrossRefPubMedGoogle Scholar
  20. 20.
    Boutros NN, Arfken C, Galderisi S, Warrick J, Pratt G, Iacono W. The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophr Res. 2008;99(1–3):225–37.  https://doi.org/10.1016/j.schres.2007.11.020.CrossRefPubMedGoogle Scholar
  21. 21.
    Wackermann J. Towards a quantitative characterisation of functional states of the brain: from the non-linear methodology to the global linear description. Int J Psychophysiol. 1999;34(1):65–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Koenig T, Lehmann D, Saito N, Kuginuki T, Kinoshita T, Koukkou M. Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: preliminary results. Schizophr Res. 2001;50(1–2):55–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Irisawa S, Isotani T, Yagyu T, Morita S, Nishida K, Yamada K, Yoshimura M, Okugawa G, Nobuhara K, Kinoshita T. Increased omega complexity and decreased microstate duration in nonmedicated schizophrenic patients. Neuropsychobiology. 2006;54(2):134–9.  https://doi.org/10.1159/000098264.CrossRefPubMedGoogle Scholar
  24. 24.
    Kikuchi M, Hashimoto T, Nagasawa T, Hirosawa T, Minabe Y, Yoshimura M, Strik W, Dierks T, Koenig T. Frontal areas contribute to reduced global coordination of resting-state gamma activities in drug-naive patients with schizophrenia. Schizophr Res. 2011;130(1–3):187–94.  https://doi.org/10.1016/j.schres.2011.06.003.CrossRefPubMedGoogle Scholar
  25. 25.
    Peng H, Hu B, Li L, Ratcliffe M, Zhai J, Zhao Q, Shi Q, Li Y, Liu Q. A study on validity of cortical alpha connectivity for schizophrenia. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:3286–90.  https://doi.org/10.1109/EMBC.2013.6610243.CrossRefPubMedGoogle Scholar
  26. 26.
    Saito N, Kuginuki T, Yagyu T, Kinoshita T, Koenig T, Pascual-Marqui RD, Kochi K, Wackermann J, Lehmann D. Global, regional, and local measures of complexity of multichannel electroencephalography in acute, neuroleptic-naive, first-break schizophrenics. Biol Psychiatry. 1998;43(11):794–802.CrossRefPubMedGoogle Scholar
  27. 27.
    Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2(4):229–39.  https://doi.org/10.1038/35067550.CrossRefPubMedGoogle Scholar
  28. 28.
    Lehmann D, Ozaki H, Pal I. EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol. 1987;67(3):271–88.CrossRefPubMedGoogle Scholar
  29. 29.
    Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage. 2010;52(4):1162–70.  https://doi.org/10.1016/j.neuroimage.2010.02.052.CrossRefPubMedGoogle Scholar
  30. 30.
    Kindler J, Hubl D, Strik WK, Dierks T, Koenig T. Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates. Clin Neurophysiol. 2011;122(6):1179–82.  https://doi.org/10.1016/j.clinph.2010.10.042.CrossRefPubMedGoogle Scholar
  31. 31.
    Kikuchi M, Koenig T, Wada Y, Higashima M, Koshino Y, Strik W, Dierks T. Native EEG and treatment effects in neuroleptic-naive schizophrenic patients: time and frequency domain approaches. Schizophr Res. 2007;97(1–3):163–72.  https://doi.org/10.1016/j.schres.2007.07.012.CrossRefPubMedGoogle Scholar
  32. 32.
    Rieger K, Diaz Hernandez L, Baenninger A, Koenig T. 15 years of microstate research in schizophrenia—where are we? A meta-analysis. Front Psychiatry. 2016;7:22.  https://doi.org/10.3389/fpsyt.2016.00022.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tomescu MI, Rihs TA, Becker R, Britz J, Custo A, Grouiller F, Schneider M, Debbane M, Eliez S, Michel CM. Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr Res. 2014;157(1–3):175–81.  https://doi.org/10.1016/j.schres.2014.05.036.CrossRefPubMedGoogle Scholar
  34. 34.
    Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER. Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage. 2002;16(1):41–8.  https://doi.org/10.1006/nimg.2002.1070.CrossRefPubMedGoogle Scholar
  35. 35.
    Strik W, Wopfner A, Horn H, Koschorke P, Razavi N, Walther S, Wirtz G. The Bern psychopathology scale for the assessment of system-specific psychotic symptoms. Neuropsychobiology. 2010;61(4):197–209.  https://doi.org/10.1159/000297737.CrossRefPubMedGoogle Scholar
  36. 36.
    Csillag C, Nordentoft M, Mizuno M, Jones PB, Killackey E, Taylor M, Chen E, Kane J, McDaid D. Early intervention services in psychosis: from evidence to wide implementation. Early Interv Psychiatry. 2016;10(6):540–6.  https://doi.org/10.1111/eip.12279.CrossRefPubMedGoogle Scholar
  37. 37.
    Galderisi S, Mucci A, Bitter I, Libiger J, Bucci P, Fleischhacker WW, Kahn RS, Eufest Study G. Persistent negative symptoms in first episode patients with schizophrenia: results from the European First Episode Schizophrenia Trial. Eur Neuropsychopharmacol. 2013;23(3):196–204.  https://doi.org/10.1016/j.euroneuro.2012.04.019.CrossRefPubMedGoogle Scholar
  38. 38.
    Loebel AD, Lieberman JA, Alvir JM, Mayerhoff DI, Geisler SH, Szymanski SR. Duration of psychosis and outcome in first-episode schizophrenia. Am J Psychiatry. 1992;149(9):1183–8.  https://doi.org/10.1176/ajp.149.9.1183.CrossRefPubMedGoogle Scholar
  39. 39.
    Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L, Barale F, Caverzasi E, McGuire P. Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry. 2012;69(3):220–9.  https://doi.org/10.1001/archgenpsychiatry.2011.1472.CrossRefPubMedGoogle Scholar
  40. 40.
    Kawasaki Y, Suzuki M, Kherif F, Takahashi T, Zhou SY, Nakamura K, Matsui M, Sumiyoshi T, Seto H, Kurachi M. Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. NeuroImage. 2007;34(1):235–42.  https://doi.org/10.1016/j.neuroimage.2006.08.018.CrossRefPubMedGoogle Scholar
  41. 41.
    Lin YT, Liu CM, Chiu MJ, Liu CC, Chien YL, Hwang TJ, Jaw FS, Shan JC, Hsieh MH, Hwu HG. Differentiation of schizophrenia patients from healthy subjects by mismatch negativity and neuropsychological tests. PLoS One. 2012;7(4):e34454.  https://doi.org/10.1371/journal.pone.0034454.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Takahashi T, Zhou SY, Nakamura K, Tanino R, Furuichi A, Kido M, Kawasaki Y, Noguchi K, Seto H, Kurachi M, Suzuki M. A follow-up MRI study of the fusiform gyrus and middle and inferior temporal gyri in schizophrenia spectrum. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(8):1957–64.  https://doi.org/10.1016/j.pnpbp.2011.07.009.CrossRefPubMedGoogle Scholar
  43. 43.
    Naatanen R, Gaillard AW, Mantysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. 1978;42(4):313–29.CrossRefGoogle Scholar
  44. 44.
    Light GA, Swerdlow NR, Thomas ML, Calkins ME, Green MF, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Pela M, Radant AD, Seidman LJ, Sharp RF, Siever LJ, Silverman JM, Sprock J, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Braff DL, Turetsky BI. Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia: characterization of demographic, clinical, cognitive, and functional correlates in COGS-2. Schizophr Res. 2015;163(1–3):63–72.  https://doi.org/10.1016/j.schres.2014.09.042.CrossRefPubMedGoogle Scholar
  45. 45.
    Bramon E, Rabe-Hesketh S, Sham P, Murray RM, Frangou S. Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr Res. 2004;70(2–3):315–29.  https://doi.org/10.1016/j.schres.2004.01.004.CrossRefPubMedGoogle Scholar
  46. 46.
    Ozgurdal S, Gudlowski Y, Witthaus H, Kawohl W, Uhl I, Hauser M, Gorynia I, Gallinat J, Heinze M, Heinz A, Juckel G. Reduction of auditory event-related P300 amplitude in subjects with at-risk mental state for schizophrenia. Schizophr Res. 2008;105(1–3):272–8.  https://doi.org/10.1016/j.schres.2008.05.017.CrossRefPubMedGoogle Scholar
  47. 47.
    Frommann I, Brinkmeyer J, Ruhrmann S, Hack E, Brockhaus-Dumke A, Bechdolf A, Wolwer W, Klosterkotter J, Maier W, Wagner M. Auditory P300 in individuals clinically at risk for psychosis. Int J Psychophysiol. 2008;70(3):192–205.  https://doi.org/10.1016/j.ijpsycho.2008.07.003.CrossRefPubMedGoogle Scholar
  48. 48.
    Higuchi Y, Sumiyoshi T, Kawasaki Y, Matsui M, Arai H, Kurachi M. Electrophysiological basis for the ability of olanzapine to improve verbal memory and functional outcome in patients with schizophrenia: a LORETA analysis of P300. Schizophr Res. 2008;101(1–3):320–30.  https://doi.org/10.1016/j.schres.2008.01.020.CrossRefPubMedGoogle Scholar
  49. 49.
    Sumiyoshi T, Higuchi Y, Itoh T, Matsui M, Arai H, Suzuki M, Kurachi M, Sumiyoshi C, Kawasaki Y. Effect of perospirone on P300 electrophysiological activity and social cognition in schizophrenia: a three-dimensional analysis with sloreta. Psychiatry Res. 2009;172(3):180–3.  https://doi.org/10.1016/j.pscychresns.2008.07.005.CrossRefPubMedGoogle Scholar
  50. 50.
    Umbricht D, Javitt D, Novak G, Bates J, Pollack S, Lieberman J, Kane J. Effects of clozapine on auditory event-related potentials in schizophrenia. Biol Psychiatry. 1998;44(8):716–25.CrossRefPubMedGoogle Scholar
  51. 51.
    Galderisi S, Mucci A, Volpe U, Boutros N. Evidence-based medicine and electrophysiology in schizophrenia. Clin EEG Neurosci. 2009;40(2):62–77.CrossRefPubMedGoogle Scholar
  52. 52.
    van Tricht MJ, Nieman DH, Koelman JH, van der Meer JN, Bour LJ, de Haan L, Linszen DH. Reduced parietal P300 amplitude is associated with an increased risk for a first psychotic episode. Biol Psychiatry. 2010;68(7):642–8.  https://doi.org/10.1016/j.biopsych.2010.04.022.CrossRefPubMedGoogle Scholar
  53. 53.
    Bramon E, Shaikh M, Broome M, Lappin J, Berge D, Day F, Woolley J, Tabraham P, Madre M, Johns L, Howes O, Valmaggia L, Perez V, Sham P, Murray RM, McGuire P. Abnormal P300 in people with high risk of developing psychosis. Neuroimage. 2008;41(2):553–60.  https://doi.org/10.1016/j.neuroimage.2007.12.038.CrossRefPubMedGoogle Scholar
  54. 54.
    Erickson MA, Ruffle A, Gold JM. A meta-analysis of mismatch negativity in schizophrenia: from clinical risk to disease specificity and progression. Biol Psychiatry. 2016;79(12):980–7.  https://doi.org/10.1016/j.biopsych.2015.08.025.CrossRefPubMedGoogle Scholar
  55. 55.
    Baldeweg T, Hirsch SR. Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: a comparison with bipolar disorder and Alzheimer's disease. Int J Psychophysiol. 2015;95(2):145–55.  https://doi.org/10.1016/j.ijpsycho.2014.03.008.CrossRefPubMedGoogle Scholar
  56. 56.
    He W, Chai H, Zheng L, Yu W, Chen W, Li J, Chen W, Wang W. Mismatch negativity in treatment-resistant depression and borderline personality disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(2):366–71.  https://doi.org/10.1016/j.pnpbp.2009.12.021.CrossRefPubMedGoogle Scholar
  57. 57.
    Jahshan C, Wynn JK, Mathis KI, Altshuler LL, Glahn DC, Green MF. Cross-diagnostic comparison of duration mismatch negativity and P3a in bipolar disorder and schizophrenia. Bipolar Disord. 2012b;14(3):239–48.  https://doi.org/10.1111/j.1399-5618.2012.01008.x.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kasai K, Yamada H, Kamio S, Nakagome K, Iwanami A, Fukuda M, Yumoto M, Itoh K, Koshida I, Abe O, Kato N. Do high or low doses of anxiolytics and hypnotics affect mismatch negativity in schizophrenic subjects? An EEG and MEG study. Clin Neurophysiol. 2002;113(1):141–50.CrossRefPubMedGoogle Scholar
  59. 59.
    Leung S, Croft RJ, Baldeweg T, Nathan PJ. Acute dopamine D(1) and D(2) receptor stimulation does not modulate mismatch negativity (MMN) in healthy human subjects. Psychopharmacology. 2007;194(4):443–51.  https://doi.org/10.1007/s00213-007-0865-1.CrossRefPubMedGoogle Scholar
  60. 60.
    Michie PT, Budd TW, Todd J, Rock D, Wichmann H, Box J, Jablensky AV. Duration and frequency mismatch negativity in schizophrenia. Clin Neurophysiol. 2000;111(6):1054–65.CrossRefPubMedGoogle Scholar
  61. 61.
    Haigh SM, Coffman BA, Salisbury DF. Mismatch negativity in first-episode schizophrenia: a meta-analysis. Clin EEG Neurosci. 2016.  https://doi.org/10.1177/1550059416645980.
  62. 62.
    Naatanen R, Todd J, Schall U. Mismatch negativity (MMN) as biomarker predicting psychosis in clinically at-risk individuals. Biol Psychol. 2016;116:36–40.  https://doi.org/10.1016/j.biopsycho.2015.10.010.CrossRefPubMedGoogle Scholar
  63. 63.
    Higuchi Y, Seo T, Miyanishi T, Kawasaki Y, Suzuki M, Sumiyoshi T. Mismatch negativity and p3a/reorienting complex in subjects with schizophrenia or at-risk mental state. Front Behav Neurosci. 2014;8:172.  https://doi.org/10.3389/fnbeh.2014.00172.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Jahshan C, Cadenhead KS, Rissling AJ, Kirihara K, Braff DL, Light GA. Automatic sensory information processing abnormalities across the illness course of schizophrenia. Psychol Med. 2012a;42(1):85–97.  https://doi.org/10.1017/S0033291711001061.CrossRefPubMedGoogle Scholar
  65. 65.
    Nagai T, Tada M, Kirihara K, Araki T, Jinde S, Kasai K. Mismatch negativity as a “translatable” brain marker toward early intervention for psychosis: a review. Front Psychiatry. 2013;4:115.  https://doi.org/10.3389/fpsyt.2013.00115.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kiang M, Braff DL, Sprock J, Light GA. The relationship between preattentive sensory processing deficits and age in schizophrenia patients. Clin Neurophysiol. 2009;120(11):1949–57.  https://doi.org/10.1016/j.clinph.2009.08.019.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Boutros NN, Mucci A, Vignapiano A, Galderisi S. Electrophysiological aberrations associated with negative symptoms in schizophrenia. Curr Top Behav Neurosci. 2014;21:129–56.  https://doi.org/10.1007/7854_2014_303.CrossRefPubMedGoogle Scholar
  68. 68.
    Galderisi S, Vignapiano A, Mucci A, Boutros NN. Physiological correlates of positive symptoms in schizophrenia. Curr Top Behav Neurosci. 2014;21:103–28.  https://doi.org/10.1007/7854_2014_322.CrossRefPubMedGoogle Scholar
  69. 69.
    Smith DM, Grant B, Fisher DJ, Borracci G, Labelle A, Knott VJ. Auditory verbal hallucinations in schizophrenia correlate with P50 gating. Clin Neurophysiol. 2013;124(7):1329–35.  https://doi.org/10.1016/j.clinph.2013.02.004.CrossRefPubMedGoogle Scholar
  70. 70.
    Smucny J, Olincy A, Eichman LC, Lyons E, Tregellas JR. Early sensory processing deficits predict sensitivity to distraction in schizophrenia. Schizophr Res. 2013;147(1):196–200.  https://doi.org/10.1016/j.schres.2013.03.025.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Heinks-Maldonado TH, Mathalon DH, Houde JF, Gray M, Faustman WO, Ford JM. Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations. Arch Gen Psychiatry. 2007;64(3):286–96.  https://doi.org/10.1001/archpsyc.64.3.286.CrossRefPubMedGoogle Scholar
  72. 72.
    Hubl D, Koenig T, Strik WK, Garcia LM, Dierks T. Competition for neuronal resources: how hallucinations make themselves heard. Br J Psychiatry. 2007;190:57–62.  https://doi.org/10.1192/bjp.bp.106.022954.CrossRefPubMedGoogle Scholar
  73. 73.
    Ford JM, Dierks T, Fisher DJ, Herrmann CS, Hubl D, Kindler J, Koenig T, Mathalon DH, Spencer KM, Strik W, van Lutterveld R. Neurophysiological studies of auditory verbal hallucinations. Schizophr Bull. 2012;38(4):715–23.  https://doi.org/10.1093/schbul/sbs009.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    van Lutterveld R, Sommer IE, Ford JM. The neurophysiology of auditory hallucinations—a historical and contemporary review. Front Psychiatry. 2011;2:28.  https://doi.org/10.3389/fpsyt.2011.00028.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kargel C, Sartory G, Kariofillis D, Wiltfang J, Muller BW. Mismatch negativity latency and cognitive function in schizophrenia. PLoS One. 2014;9(4):e84536.  https://doi.org/10.1371/journal.pone.0084536.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Fisher DJ, Grant B, Smith DM, Knott VJ. Effects of deviant probability on the ‘optimal’ multi-feature mismatch negativity (MMN) paradigm. Int J Psychophysiol. 2011;79(2):311–5.  https://doi.org/10.1016/j.ijpsycho.2010.11.006.CrossRefPubMedGoogle Scholar
  77. 77.
    Turetsky BI, Dress EM, Braff DL, Calkins ME, Green MF, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Sprock J, Stone WS, Sugar CA, Swerdlow NR, Tsuang DW, Tsuang MT, Light G. The utility of P300 as a schizophrenia endophenotype and predictive biomarker: clinical and socio-demographic modulators in COGS-2. Schizophr Res. 2015;163(1–3):53–62.  https://doi.org/10.1016/j.schres.2014.09.024.CrossRefPubMedGoogle Scholar
  78. 78.
    Kiang M, Kutas M, Light GA, Braff DL. Electrophysiological insights into conceptual disorganization in schizophrenia. Schizophr Res. 2007;92(1–3):225–36.  https://doi.org/10.1016/j.schres.2007.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Debruille JB, Kumar N, Saheb D, Chintoh A, Gharghi D, Lionnet C, King S. Delusions and processing of discrepant information: an event-related brain potential study. Schizophr Res. 2007;89(1–3):261–77.  https://doi.org/10.1016/j.schres.2006.07.014.CrossRefPubMedGoogle Scholar
  80. 80.
    Campanella S, Guerit JM. How clinical neurophysiology may contribute to the understanding of a psychiatric disease such as schizophrenia. Neurophysiol Clin. 2009;39(1):31–9.  https://doi.org/10.1016/j.neucli.2008.12.002.CrossRefPubMedGoogle Scholar
  81. 81.
    Galderisi S, Farden A, Kaiser S. Dissecting negative symptoms of schizophrenia: history, assessment, pathophysiological mechanisms and treatment. Schizophr Res. 2016.  https://doi.org/10.1016/j.schres.2016.04.046.
  82. 82.
    Kirschner M, Aleman A, Kaiser S. Secondary negative symptoms—a review of mechanisms, assessment and treatment. Schizophr Res. 2016.  https://doi.org/10.1016/j.schres.2016.05.003.
  83. 83.
    Mucci A, Merlotti E, Ucok A, Aleman A, Galderisi S. Primary and persistent negative symptoms: concepts, assessments and neurobiological bases. Schizophr Res. 2016.  https://doi.org/10.1016/j.schres.2016.05.014.
  84. 84.
    Jeon YW, Polich J. Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology. 2003;40(5):684–701.CrossRefPubMedGoogle Scholar
  85. 85.
    Foussias G, Remington G. Negative symptoms in schizophrenia: avolition and Occam's razor. Schizophr Bull. 2010;36(2):359–69.  https://doi.org/10.1093/schbul/sbn094.CrossRefPubMedGoogle Scholar
  86. 86.
    Strauss GP, Waltz JA, Gold JM. A review of reward processing and motivational impairment in schizophrenia. Schizophr Bull. 2014;40(Suppl 2):S107–16.  https://doi.org/10.1093/schbul/sbt197.CrossRefPubMedGoogle Scholar
  87. 87.
    Pfabigan DM, Alexopoulos J, Bauer H, Sailer U. Manipulation of feedback expectancy and valence induces negative and positive reward prediction error signals manifest in event-related brain potentials. Psychophysiology. 2011;48(5):656–64.  https://doi.org/10.1111/j.1469-8986.2010.01136.x.CrossRefPubMedGoogle Scholar
  88. 88.
    Wynn JK, Horan WP, Kring AM, Simons RF, Green MF. Impaired anticipatory event-related potentials in schizophrenia. Int J Psychophysiol. 2010;77(2):141–9.  https://doi.org/10.1016/j.ijpsycho.2010.05.009.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Vignapiano A, Mucci A, Ford J, Montefusco V, Plescia GM, Bucci P, Galderisi S. Reward anticipation and trait anhedonia: an electrophysiological investigation in subjects with schizophrenia. Clin Neurophysiol. 2016;127(4):2149–60.  https://doi.org/10.1016/j.clinph.2016.01.006.CrossRefPubMedGoogle Scholar
  90. 90.
    Horan WP, Foti D, Hajcak G, Wynn JK, Green MF. Impaired neural response to internal but not external feedback in schizophrenia. Psychol Med. 2012;42(8):1637–47.  https://doi.org/10.1017/S0033291711002819.CrossRefPubMedGoogle Scholar
  91. 91.
    Li Z, Zheng B, Deng W, Liu X, Zheng Z, Li T. Multi-components of evoked-brain potentials in deficit and nondeficit schizophrenia. Asia Pac Psychiatry. 2013;5(2):69–79.  https://doi.org/10.1111/appy.12030.CrossRefPubMedGoogle Scholar
  92. 92.
    Mucci A, Galderisi S, Kirkpatrick B, Bucci P, Volpe U, Merlotti E, Centanaro F, Catapano F, Maj M. Double dissociation of N1 and P3 abnormalities in deficit and nondeficit schizophrenia. Schizophr Res. 2007;92(1–3):252–61.  https://doi.org/10.1016/j.schres.2007.01.026.CrossRefPubMedGoogle Scholar
  93. 93.
    Turetsky BI, Colbath EA, Gur RE. P300 subcomponent abnormalities in schizophrenia: I. Physiological evidence for gender and subtype specific differences in regional pathology. Biol Psychiatry. 1998;43(2):84–96.  https://doi.org/10.1016/S0006-3223(97)00258-8.CrossRefPubMedGoogle Scholar
  94. 94.
    Lucas S, Fitzgerald D, Redoblado-Hodge MA, Anderson J, Sanbrook M, Harris A, Brennan J. Neuropsychological correlates of symptom profiles in first episode schizophrenia. Schizophr Res. 2004;71(2–3):323–30.  https://doi.org/10.1016/j.schres.2004.03.006.CrossRefPubMedGoogle Scholar
  95. 95.
    Liddle PF. The symptoms of chronic schizophrenia. A re-examination of the positive-negative dichotomy. Br J Psychiatry. 1987;151:145–51.CrossRefPubMedGoogle Scholar
  96. 96.
    Potter D, Summerfelt A, Gold J, Buchanan RW. Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia. Schizophr Bull. 2006;32(4):692–700.  https://doi.org/10.1093/schbul/sbj050.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Park HRP, Lim VK, Kirk IJ, Waldie KE. P50 sensory gating deficits in schizotypy. Personal Individ Differ. 2015;82:142–7.CrossRefGoogle Scholar
  98. 98.
    Williams LM, Gordon E, Wright J, Bahramali H. Late component ERPs are associated with three syndromes in schizophrenia. Int J Neurosci. 2000;105:37–52.CrossRefPubMedGoogle Scholar
  99. 99.
    Niemann K, Hammers A, Coenen VA, Thron A, Klosterkotter J. Evidence of a smaller left hippocampus and left temporal horn in both patients with first episode schizophrenia and normal control subjects. Psychiatry Res. 2000;99(2):93–110.CrossRefPubMedGoogle Scholar
  100. 100.
    Iwanami A, Okajima Y, Kuwakado D, Isono H, Kasai K, Hata A, Nakagome K, Fukuda M, Kamijima K. Event-related potentials and thought disorder in schizophrenia. Schizophr Res. 2000;42:187–91.CrossRefPubMedGoogle Scholar
  101. 101.
    Mathalon DH, Roach BJ, Ford JM. Automatic semantic priming abnormalities in schizophrenia. Int J Psychophysiol. 2010;75(2):157–66.  https://doi.org/10.1016/j.ijpsycho.2009.12.003.CrossRefPubMedGoogle Scholar
  102. 102.
    Condray R, Siegle GJ, Cohen JD, van Kammen DP, Steinhauer SR. Automatic activation of the semantic network in schizophrenia: evidence from event-related brain potentials. Biol Psychiatry. 2003;54(11):1134–48.CrossRefPubMedGoogle Scholar
  103. 103.
    Mathalon DH, Faustman WO, Ford JM. N400 and automatic semantic processing abnormalities in patients with schizophrenia. Arch Gen Psychiatry. 2002;59(7):641–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Martha Koukkou
    • 1
  • Thomas Koenig
    • 2
  • Anja Bänninger
    • 2
  • Kathryn Rieger
    • 2
  • Laura Diaz Hernandez
    • 2
  • Yuko Higuchi
    • 3
  • Tomiki Sumiyoshi
    • 4
  • Annarita Vignapiano
    • 5
  • Giulia Maria Giordano
    • 5
  • Antonella Amodio
    • 5
  • Armida Mucci
    • 5
  1. 1.The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZurichSwitzerland
  2. 2.Translational Research Center, University Hospital of PsychiatryUniversity of BernBernSwitzerland
  3. 3.Department of NeuropsychiatryUniversity of Toyama Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
  4. 4.Department of Clinical EpidemiologyTranslational Medical Center, National Center of Neurology and PsychiatryTokyoJapan
  5. 5.Department of PsychiatryUniversity of Campania “Luigi Vanvitelli”NaplesItaly

Personalised recommendations