Advertisement

Immune Checkpoint Inhibition

  • Sarah Sammons
  • Megan McNamara
  • April K. S. Salama
  • Jeffrey Crawford
Chapter

Abstract

Immune checkpoint inhibitors (ICI) represent a class of immuno-oncology drugs consisting of monoclonal antibodies occurring against inhibitory receptors or ligands within the immune system including CTLA-4, PD-1, and PD-L1. ICI has transformed oncology in the last decade leading to increased response rates and improved overall survival across several advanced malignancies. ICI is associated with a unique array of toxicities termed immune-related adverse events (IrAEs) which are T-cell-mediated autoimmune toxicities reported in nearly every organ system; most commonly affecting the skin, liver, gastrointestinal tract, and endocrine system. Most IrAEs are manageable with prompt recognition and initiation of appropriate management. General treatment of IrAEs is based on immunosuppression using varying strengths of glucocorticoids. Severe steroid-refractory IrAEs have required nonsteroidal immunosuppressive agents. In this chapter, we describe IrAEs observed with CTLA-4 and PD-1/PDL-1 inhibition by system describing clinical presentation, grading, incidence, time of onset, management, and time to resolution.

Keywords

Immune-related adverse events Immune checkpoint inhibition Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) Programmed cell death-1 (PD-1) Side effects Toxicity Immunotherapy Rash Vitiligo Pruritus Diarrhea Colitis Hepatitis Pneumonitis Hypophysitis Thyroiditis Nephritis 

References

  1. 1.
    Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974–82.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Eggermont AM, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bertrand A, et al. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 2015;13:211.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Robert C, et al. Pembrolizumab versus Ipilimumab in advanced Melanoma. N Engl J Med. 2015;372(26):2521–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Garon EB, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Herbst RS, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2015;387(10027):1540–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Reck M, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen R, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bellmunt J, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Borghaei H, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Brahmer J, et al. Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Motzer RJ, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ansell SM, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 2015;372(4):311–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Sharma P, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenberg JE, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rittmeyer A, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.CrossRefGoogle Scholar
  19. 19.
    Massard C, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death Ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016;34(26):3119–25.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gulley JL, et al. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN solid tumor): dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol. 2017;18(5):599–610.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hamanishi J, et al. Safety and antitumor activity of anti-PD-1 antibody, Nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol. 2015;33(34):4015–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Nghiem PT, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med. 2016;374(26):2542–52.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Johnson DB, et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2016;2(2):234–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Robert C, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Weber JS, Antonia SJ, Topalian SL, Schadendorf D, Larkin JMG, Sznol M, Liu H, Waxman I, Robert C. Safety profile of nivolumab (NIVO) in patients with advanced melanoma: a pooled analysis. J Clin Oncol. 2015;33(15 suppl):9018.Google Scholar
  26. 26.
    Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1.PubMedCrossRefGoogle Scholar
  27. 27.
    The National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) v4.0.; Available from: http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf.
  28. 28.
    Jaber SH, et al. Skin reactions in a subset of patients with stage IV melanoma treated with anti-cytotoxic T-lymphocyte antigen 4 monoclonal antibody as a single agent. Arch Dermatol. 2006;142(2):166–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Lacouture ME, et al. Ipilimumab in patients with cancer and the management of dermatologic adverse events. J Am Acad Dermatol. 2014;71(1):161–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Hwang SJ, et al. Bullous pemphigoid, an autoantibody-mediated disease, is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies. Melanoma Res. 2016;26(4):413–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Joseph RW, et al. Lichenoid dermatitis in three patients with metastatic melanoma treated with anti-PD-1 therapy. Cancer Immunol Res. 2015;3(1):18–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Naidoo J, et al. Autoimmune bullous skin disorders with immune checkpoint inhibitors targeting PD-1 and PD-L1. Cancer Immunol Res. 2016;4(5):383–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Nayar N, Briscoe K, Fernandez Penas P. Toxic epidermal necrolysis-like reaction with severe satellite cell necrosis associated with nivolumab in a patient with ipilimumab refractory metastatic melanoma. J Immunother. 2016;39(3):149–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Teulings HE, et al. Vitiligo-like depigmentation in patients with stage III–IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol. 2015;33(7):773–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Fecher LA, et al. Ipilimumab and its toxicities: a multidisciplinary approach. Oncologist. 2013;18(6):733–43.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sanlorenzo M, et al. Pembrolizumab cutaneous adverse events and their association with disease progression. JAMA Dermatol. 2015;151(11):1206–12.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rizvi NA, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–65.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Larkin J, et al. Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: a pooled analysis of 4 clinical trials. JAMA Oncol. 2015;1(4):433–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Yervoy® [Package insert]. 2013 [cited 2016 April]. Available from: http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=2265ef30-253e-11df-8a39-0800200c9a66.
  40. 40.
    Weber JS, Kahler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Naidoo J, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91.PubMedGoogle Scholar
  42. 42.
    Kim KW, et al. Ipilimumab-associated colitis: CT findings. AJR Am J Roentgenol. 2013;200(5):W468–74.PubMedCrossRefGoogle Scholar
  43. 43.
    Beck KE, et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol. 2006;24(15):2283–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Opdivo® [package insert]. 2015 [cited 2016 April]. Available from: http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f570b9c4-6846-4de2-abfa-4d0a4ae4e394.
  45. 45.
    Keytruda® [package insert]. 2015 [cited 2016 April]. Available from: http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=9333c79b-d487-4538-a9f0-71b91a02b287.
  46. 46.
    Weber J, et al. A randomized, double-blind, placebo-controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin Cancer Res. 2009;15(17):5591–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Weber JS, et al. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer. 2013;119(9):1675–82.PubMedCrossRefGoogle Scholar
  48. 48.
    O’Day S, Weber JS, Wolchok JD, et al. Effectiveness of treatment guidance on diarrhea and colitis across ipilimumab studies. J Clin Oncol. 2011; 28:554–8554.Google Scholar
  49. 49.
    Johnston RL, et al. Cytotoxic T-lymphocyte-associated antigen 4 antibody-induced colitis and its management with infliximab. Dig Dis Sci. 2009;54(11):2538–40.PubMedCrossRefGoogle Scholar
  50. 50.
    Ravi S, et al. Ipilimumab administration for advanced melanoma in patients with pre-existing hepatitis B or C infection: a multicenter, retrospective case series. J Immunother Cancer. 2014;2(1):33.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chmiel KD, et al. Resolution of severe ipilimumab-induced hepatitis after antithymocyte globulin therapy. J Clin Oncol. 2011;29(9):e237–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Nishino M, et al. Anti-PD-1-related pneumonitis during cancer immunotherapy. N Engl J Med. 2015;373(3):288–90.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kwon ED, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Postow MA, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Weber JS, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84.PubMedCrossRefGoogle Scholar
  57. 57.
    Abdel-Rahman O, Fouad M. Risk of pneumonitis in cancer patients treated with immune checkpoint inhibitors: a meta-analysis. Ther Adv Respir Dis. 2016;10(3):183–93.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 2016;44:51–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Hofmann L, et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer. 2016;60:190–209.PubMedCrossRefGoogle Scholar
  60. 60.
    Corsello SM, et al. Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab. 2013;98(4):1361–75.PubMedCrossRefGoogle Scholar
  61. 61.
    Ribas A, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–18.PubMedCrossRefGoogle Scholar
  62. 62.
    Horvat TZ, et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with Ipilimumab at Memorial Sloan Kettering Cancer Center. J Clin Oncol. 2015;33(28):3193–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Eigentler TK, et al. Diagnosis, monitoring and management of immune-related adverse drug reactions of anti-PD-1 antibody therapy. Cancer Treat Rev. 2016;45:7–18.PubMedCrossRefGoogle Scholar
  64. 64.
    Ryder M, et al. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer. 2014;21(2):371–81.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dillard T, et al. Anti-CTLA-4 antibody therapy associated autoimmune hypophysitis: serious immune related adverse events across a spectrum of cancer subtypes. Pituitary. 2010;13(1):29–38.PubMedCrossRefGoogle Scholar
  66. 66.
    Blansfield JA, et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J Immunother. 2005;28(6):593–8.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Juszczak A, et al. Ipilimumab: a novel immunomodulating therapy causing autoimmune hypophysitis: a case report and review. Eur J Endocrinol. 2012;167(1):1–5.PubMedCrossRefGoogle Scholar
  68. 68.
    van den Eertwegh AJ, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(5):509–17.PubMedCrossRefGoogle Scholar
  69. 69.
    Madan RA, et al. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(5):501–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Min L, Vaidya A, Becker C. Association of ipilimumab therapy for advanced melanoma with secondary adrenal insufficiency: a case series. Endocr Pract. 2012;18(3):351–5.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mahzari M, et al. Immune checkpoint inhibitor therapy associated hypophysitis. Clin Med Insights Endocrinol Diabetes. 2015;8:21–8.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Albarel F, et al. Long-term follow-up of ipilimumab-induced hypophysitis, a common adverse event of the anti-CTLA-4 antibody in melanoma. Eur J Endocrinol. 2015;172(2):195–204.PubMedCrossRefGoogle Scholar
  73. 73.
    Marlier J, et al. Ipilimumab, not just another anti-cancer therapy: hypophysitis as side effect illustrated by four case-reports. Endocrine. 2014;47(3):878–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Faje AT, et al. Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J Clin Endocrinol Metab. 2014;99(11):4078–85.PubMedCrossRefGoogle Scholar
  75. 75.
    Della Vittoria Scarpati G, et al. Ipilimumab in the treatment of metastatic melanoma: management of adverse events. Onco Targets Ther. 2014;7:203–9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Grossman AB. Clinical review#: the diagnosis and management of central hypoadrenalism. J Clin Endocrinol Metab. 2010;95(11):4855–63.PubMedCrossRefGoogle Scholar
  77. 77.
    Arafah BM. Medical management of hypopituitarism in patients with pituitary adenomas. Pituitary. 2002;5(2):109–17.PubMedCrossRefGoogle Scholar
  78. 78.
    Downey SG, et al. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res. 2007;13(22 Pt 1):6681–8.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Caturegli P, et al. Autoimmune hypophysitis. Endocr Rev. 2005;26(5):599–614.PubMedCrossRefGoogle Scholar
  80. 80.
    Gordon IO, et al. Immune-mediated red cell aplasia after anti-CTLA-4 immunotherapy for metastatic melanoma. Cancer Immunol Immunother. 2009;58(8):1351–3.PubMedCrossRefGoogle Scholar
  81. 81.
    Akhtari M, et al. Neutropenia in a patient treated with ipilimumab (anti-CTLA-4 antibody). J Immunother. 2009;32(3):322–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Delyon J, Mateus C, Lambert T. Hemophilia a induced by ipilimumab. N Engl J Med. 2011;365(18):1747–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Ahmad S, et al. Ipilimumab-induced thrombocytopenia in a patient with metastatic melanoma. J Oncol Pharm Pract. 2012;18(2):287–92.PubMedCrossRefGoogle Scholar
  84. 84.
    Hahn L, Pepple KL. Bilateral neuroretinitis and anterior uveitis following ipilimumab treatment for metastatic melanoma. J Ophthalmic Inflamm Infect. 2016;6(1):14.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Papavasileiou E, et al. Ipilimumab-induced ocular and orbital inflammation-a case series and review of the literature. Ocul Immunol Inflamm. 2016;24(2):140–6.PubMedGoogle Scholar
  86. 86.
    Abu Samra K, et al. A case of bilateral uveitis and papillitis in a patient treated with pembrolizumab. Eur J Ophthalmol. 2016;26(3):e46–8.PubMedCrossRefGoogle Scholar
  87. 87.
    de Velasco G, Bermas B, Choueiri TK. Autoimmune arthropathy and uveitis as complications of programmed death 1 inhibitor treatment. Arthritis Rheumatol. 2016;68(2):556–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Tarhini A. Immune-mediated adverse events associated with ipilimumab ctla-4 blockade therapy: the underlying mechanisms and clinical management. Scientifica (Cairo). 2013;2013:857519.Google Scholar
  89. 89.
    Chan MM, et al. Arthritis and tenosynovitis associated with the anti-PD1 antibody pembrolizumab in metastatic melanoma. J Immunother. 2015;38(1):37–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Hunter G, Voll C, Robinson CA. Autoimmune inflammatory myopathy after treatment with ipilimumab. Can J Neurol Sci. 2009;36(4):518–20.PubMedCrossRefGoogle Scholar
  91. 91.
    Vallet H, et al. Pembrolizumab-induced necrotic myositis in a patient with metastatic melanoma. Ann Oncol. 2016;27(7):1352–3.PubMedCrossRefGoogle Scholar
  92. 92.
    Andersen R, et al. Late development of splenic sarcoidosis-like lesions in a patient with metastatic melanoma and long-lasting clinical response to ipilimumab. Oncoimmunology. 2014;3(8):e954506.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Brahmer JR, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Berthod G, et al. Pulmonary sarcoid-like granulomatosis induced by ipilimumab. J Clin Oncol. 2012;30(17):e156–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Eckert A, et al. Anti-CTLA4 monoclonal antibody induced sarcoidosis in a metastatic melanoma patient. Dermatology. 2009;218(1):69–70.PubMedCrossRefGoogle Scholar
  96. 96.
    van den Brom RR, et al. Rapid granulomatosis with polyangiitis induced by immune checkpoint inhibition. Rheumatology (Oxford). 2016;55(6):1143–5.CrossRefGoogle Scholar
  97. 97.
    Goldstein BL, Gedmintas L, Todd DJ. Drug-associated polymyalgia rheumatica/giant cell arteritis occurring in two patients after treatment with ipilimumab, an antagonist of ctla-4. Arthritis Rheumatol. 2014;66(3):768–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Wilgenhof S, Neyns B. Anti-CTLA-4 antibody-induced Guillain-Barre syndrome in a melanoma patient. Ann Oncol. 2011;22(4):991–3.PubMedCrossRefGoogle Scholar
  99. 99.
    Yang JC, et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007;30(8):825–30.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Maur M, et al. Posterior reversible encephalopathy syndrome during ipilimumab therapy for malignant melanoma. J Clin Oncol. 2012;30(6):e76–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Liao B, et al. Atypical neurological complications of ipilimumab therapy in patients with metastatic melanoma. Neuro Oncol. 2014;16(4):589–93.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Thaipisuttikul I, Chapman P, Avila EK. Peripheral neuropathy associated with ipilimumab: a report of 2 cases. J Immunother. 2015;38(2):77–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bhatia S, et al. Inflammatory enteric neuropathy with severe constipation after ipilimumab treatment for melanoma: a case report. J Immunother. 2009;32(2):203–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Forde PM, et al. Ipilimumab-induced immune-related renal failure--a case report. Anticancer Res. 2012;32(10):4607–8.PubMedGoogle Scholar
  105. 105.
    Izzedine H, et al. Kidney injuries related to ipilimumab. Investig New Drugs. 2014;32(4):769–73.CrossRefGoogle Scholar
  106. 106.
    Fadel F, El Karoui K, Knebelmann B. Anti-CTLA4 antibody-induced lupus nephritis. N Engl J Med. 2009;361(2):211–2.PubMedCrossRefGoogle Scholar
  107. 107.
    Di Giacomo AM, et al. Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol Immunother. 2009;58(8):1297–306.PubMedCrossRefGoogle Scholar
  108. 108.
    Geisler BP, et al. Apical ballooning and cardiomyopathy in a melanoma patient treated with ipilimumab: a case of takotsubo-like syndrome. J Immunother Cancer. 2015;3:4.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Mehta A, et al. Myocarditis as an immune-related adverse event with ipilimumab/nivolumab combination therapy for metastatic melanoma. Melanoma Res. 2016;26(3):319–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sarah Sammons
    • 1
  • Megan McNamara
    • 1
  • April K. S. Salama
    • 1
  • Jeffrey Crawford
    • 1
  1. 1.Hematology/Oncology, Department of MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations