Residual Stress

  • Sérgio M. O. TavaresEmail author
  • Paulo M. S. T. de Castro
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Integral structures, fabricated using welding, present residual stresses, and these affect their behaviour in particular fatigue crack propagation. Residual stresses of welded metallic structures are discussed with an emphasis on numerical modelling using the finite element method and experimental measurement using the contour technique. Modelling of residual stress created by welding was carried out using the ESI software Sysweld. The reference to this software highlights aspects of interest for engineering applications through a number of examples found in the literature; these were chosen because of their exemplary nature, even if coming from a variety of applications.


  1. 1.
    P.J. Withers, H.K.D.H. Bhadeshia, Residual stress. Part 1: Measurement techniques. Mater. Sci. Technol. 17(4), 355–365 (2001)CrossRefGoogle Scholar
  2. 2.
    P.J. Withers, H.K.D.H. Bhadeshia, Residual stress. Part 2: Nature and origins. Mater. Sci. Technol. 17(4), 366–375 (2001)CrossRefGoogle Scholar
  3. 3.
    G. Totten, M. Howes, T. Inoue (eds.), Handbook of Residual Stress and Deformation of Steel (ASM International, Materials Park, Ohio, USA, 2002)Google Scholar
  4. 4.
    R.C. McClung, A literature survey on the stability and significance of residual stresses during fatigue. Fatigue Fract. Eng. Mater. Struct. 30(3), 173–205 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Niku-Lari, Advances in Surface Treatments (Pergamon Press, 1984)Google Scholar
  6. 6.
    P.M.G.P. Moreira, L.F.M. da Silva, P.M.S.T. de Castro, Structural Connections for Lightweight Metallic Structures (Springer-Verlag, 2012)Google Scholar
  7. 7.
    S. Häusler, P. Baiz, S.M.O. Tavares, A. Brot, P. Horst, M. Aliabadi, P.M.S.T. de Castro, Y. Peleg-Wolfin, Crack growth simulation in integrally stiffened structures including residual stress effects from manufacturing. Part I: Model overview. Struct. Durab. Health Monit. 7(3), 163–190 (2011)Google Scholar
  8. 8.
    S.M.O. Tavares, S. Häusler, P. Baiz, A. Brot, P. Augustin, P.M.S.T. de Castro, P. Horst, M. Aliabadi, Crack growth simulation in integrally stiffened structures including residual stress effects from manufacturing. Part II: Modelling and experiments comparison. Struct. Durab. Health Monit. 7(3), 191–210 (2011)Google Scholar
  9. 9.
    A. Lanciotti, L. Lazzeri, C. Polese, C. Rodopoulos, P. Moreira, A. Brot, G. Wang, L. Velterop, G. Biallas, J. Klement, Fatigue crack growth in stiffened panels, integrally machined or welded (LBW or FSW): the DATON project common testing program. Struct. Durab. Health Monit. 7(3), 211–230 (2011)Google Scholar
  10. 10.
    V. Richter-Trummer, P.M.G.P. Moreira, P.M.S.T. de Castro, Damage tolerance of aircraft panels taking into account residual stress, in Structural Connections for Lightweight Metallic Structures, ed. by P.M.G.P. Moreira, L.F.M. da Silva, P.M.S.T. de Castro (Springer-Verlag, Berlin, Heidelberg, 2010), pp. 173–194Google Scholar
  11. 11.
    H. Terada, An analysis of the stress intensity factor of a crack perpendicular to the welding bead. Eng. Fract. Mech. 8(2), 441–444 (1976)CrossRefGoogle Scholar
  12. 12.
    H. Terada, T. Nakajima, Analysis of stress intensity factor of a crack approaching welding bead. Int. J. Fract. 27(2), 83–90 (1985)Google Scholar
  13. 13.
    H. Tada, P.C. Paris, The stress intensity factor for a crack perpendicular to the welding bead. Int. J. Fract. 21(4), 279–284 (1983)CrossRefGoogle Scholar
  14. 14.
    D.F.O. Braga, P.M.S.T. de Castro, Fator de intensidade de tensão em placas com tensões residuais, in Mecânica da Fratura e Fadiga : Exemplos de Cálculo e Aplicação, ed. by A.J.C. Arteiro, P.M.S.T. de Castro (FEUP edições, Porto, Portugal, 2014), pp. 89–94Google Scholar
  15. 15.
    P.F.P. de Matos, P.M.G.P. Moreira, P.P. Camanho, P.M.S.T. de Castro, Numerical simulation of cold working of rivet holes. Finite Elem. Anal. Des. 41(9–10), 989–1007 (2005)CrossRefGoogle Scholar
  16. 16.
    Y. Fu, E. Ge, H. Su, J. Xu, R. Li, Cold expansion technology of connection holes in aircraft structures: a review and prospect. Chin. J. Aeronaut. 28(4), 961–973 (2015)CrossRefGoogle Scholar
  17. 17.
    P.M.S.T. de Castro, P.F.P. de Matos, P.M.G.P. Moreira, L.F.M. da Silva, An overview on fatigue analysis of aeronautical structural details: open hole, single rivet lap-joint, and lap-joint panel. Mater. Sci. Eng. A 468–47, 144–157 (2007)CrossRefGoogle Scholar
  18. 18.
    V. Richter-Trummer, S.M.O. Tavares, P.M.G.P. Moreira, M.A.V. de Figueiredo, P.M.S.T. de Castro, Residual stress measurement using the contour and the sectioning methods in a MIG weld: effects on the stress intensity factor. Ciência Tecnol. Mater. 20(1–2), 114–119 (2008)Google Scholar
  19. 19.
    D.F.O. Braga, H.E. Coules, T. Pirling, V. Richter-Trummer, P. Colegrove, P.M.S.T. de Castro, Assessment of residual stress of welded structural steel plates with or without post weld rolling using the contour method and neutron diffraction. J. Mater. Process. Technol. 213(12), 2323–2328 (2013)CrossRefGoogle Scholar
  20. 20.
    V. Richter-Trummer, E. Suzano, M. Beltrão, A. Roos, J.F. dos Santos, P.M.S.T. de Castro, Influence of the FSW clamping force on the final distortion and residual stress field. Mater. Sci. Eng. A 538, 81–88 (2012)CrossRefGoogle Scholar
  21. 21.
    U. Donatus, M. Terada, C.R. Ospina, F.M. Queiroz, A.F.S. Bugarin, I. Costa, On the AA2198-T851 alloy microstructure and its correlation with localized corrosion behaviour. Corros. Sci. 131, 300–309 (2018)CrossRefGoogle Scholar
  22. 22.
    T.R. Lima, S.M.O. Tavares, P.M.S.T. de Castro, Residual stress field and distortions resulting from welding processes: numerical modelling using Sysweld. Ciência Tecnol. Mater. 29(1), e56–e61 (2017)CrossRefGoogle Scholar
  23. 23.
    X.H. Yang, Y.L. Song, G.W. Ran, T.J. Xiao, Finite element simulation of the residual stresses in butt weld plate of aluminum alloy, in Advanced Materials Research, Vol. 383 (Trans Tech Publications, 2012), pp. 1801–1811Google Scholar
  24. 24.
    D. Tikhomirov, B. Rietman, K. Kose, M. Makkink, Computing welding distortion: comparison of different industrially applicable methods, in Advanced Materials Research, Vol. 6–8 (Trans Tech Publications, 2005), pp. 195–202Google Scholar
  25. 25.
    ESI Group, Weld Distortion and Weld Quality Simulation. Benefits, Capabilities and Products, in Sysweld Toolbox 2010 (2010)Google Scholar
  26. 26.
    K. Masubuchi, Analysis of Welded Structures: Residual Stresses, Distortion, and their Consequences (Pergamon Press, 1980)Google Scholar
  27. 27.
    Canadian Welding Bureau, Welding for Design Engineers, Residual Stress and Distortion (Gooderham Centre for Industrial Learning, 2006)Google Scholar
  28. 28.
    M.F. Zäh, S. Roeren, Structural behavior of an EN AW-6060 profile during and immediately after welding by a laser-laser-hybrid system, in Advanced Materials Research, Vol. 10 (Trans Tech Publications, 2006), pp.133–142Google Scholar
  29. 29.
    T.P. Kumari, S.V. Sairam, Finite element analysis of EBW welded joint using Sysweld. Int. J. Emerg. Technol. Adv. Eng. 3(2), 335–340 (2013)Google Scholar
  30. 30.
    S.M. Kelly, R.P. Martukanitz, P. Michaleris, M. Bugarewicz, T.D. Huang, L. Kvidahl, Low heat input welding for thin steel fabrication. J. Ship Prod. 22(2), 105–109 (2006)Google Scholar
  31. 31.
    F. Roland, L. Manzon, P. Kujala, M. Brede, J. Weitzenböck, Advanced joining techniques in european shipbuilding. J. Ship Prod. 20(3), 200–210 (2004)Google Scholar
  32. 32.
    R. Sanderson, B. Lucas, R. Pocock, Reduction of manufacturing distortion in arc welded ship panels using thermal tensioning. J. Ship Prod. 24(4), 177–179 (2008)Google Scholar
  33. 33.
    J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources. Metall. Trans. B 15(2), 299–305 (1984)CrossRefGoogle Scholar
  34. 34.
    H. Wohlfahrt, T. Nitschkepagel, K. Dilger, D. Siegele, M. Brand, J. Sakkiettibutra, T. Loose, Residual stress calculations and measurements review and assessment of the IIW round robin results. Weld. World 56(9–10), 120–140 (2012)CrossRefGoogle Scholar
  35. 35.
    ESI Group, New Release of the Welding Simulation Suite Distortion Engineering V2010/SYSWELD V2010/Visual Environment V6.5 (2010)Google Scholar
  36. 36.
    G. Casalino, M. Mortello, A FEM model to study the fiber laser welding of Ti6Al4V thin sheets. Int. J. Adv. Manuf. Technol. 86(5–8), 1339–1346 (2016)CrossRefGoogle Scholar
  37. 37.
    A.A. Deshpande, D.W.J. Tanner, W. Sun, T.H. Hyde, G. McCartney, Combined butt joint welding and post weld heat treatment simulation using SYSWELD and ABAQUS. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 225(1), 1–10 (2011)Google Scholar
  38. 38.
    A.A. Deshpande, L. Xu, W. Sun, D.G. McCartney, T.H. Hyde, Finite-element-based parametric study on welding-induced distortion of TIG-welded stainless steel 304 sheets. J. Strain Anal. Eng. Des. 46(4), 267–279 (2011)CrossRefGoogle Scholar
  39. 39.
    B.-Q. Chen, C.G. Soares, Effect of welding sequence on temperature distribution, distortions, and residual stress on stiffened plates. Int. J. Adv. Manuf. Technol. 86(9–12), 3145–3156 (2016)CrossRefGoogle Scholar
  40. 40.
    J. Yu, T. Jung, S. Kim, S. Rhee, Laser welding of cast iron and carburized steel for differential gear. J. Mech. Sci. Technol. 25(11), 2887–2893 (2011)CrossRefGoogle Scholar
  41. 41.
    G. Urriolagoitia-Sosa, A. Pérez-Cabrera, B. Romero-Ángeles, R. Rodríguez-Martínez, A. Molina-Ballinas, C.R. Torres-San Miguel, L.H. Hernández-Gómez, G. Urriolagoitia-Calderón, Numerical simulation on the residual stress induction due to welding process and assessment by the application of the crack compliance method. Adv. Mech. Eng. 5 (2013)Google Scholar
  42. 42.
    E. Yu, Y. Han, H. Xiao, Y. Gao, Numerical analysis of microstructure and residual stress in the weld zone of multiwire submerged arc welding. J. Press. Vessel Technol. 139(2) (2017)Google Scholar
  43. 43.
    L. Papadakis, A. Schober, M.F. Zaeh, Numerical investigation of the influence of preliminary manufacturing processes on the crash behaviour of automotive body assemblies. Int. J. Adv. Manuf. Technol. 65(5–8), 867–880 (2013)CrossRefGoogle Scholar
  44. 44.
    Y.H.P. Manurung, M.S. Sulaiman, S.K. Abas, G. Tham, E. Haruman, Investigation on welding distortion of combined butt and T-joints with 9-mm thickness using FEM and experiment. Int. J. Adv. Manuf. Technol. 77(5–8), 775–782 (2015)CrossRefGoogle Scholar
  45. 45.
    M. Leitner, M. Khurshid, Z. Barsoum, Stability of high frequency mechanical impact (HFMI) post-treatment induced residual stress states under cyclic loading of welded steel joints. Eng. Struct. 143, 589–602 (2017)CrossRefGoogle Scholar
  46. 46.
    J. Hildebrand, H. Soltanzadeh, A review on assessment of fatigue strength in welded studs. Int. J. Steel Struct. 14(2), 421–438 (2014)CrossRefGoogle Scholar
  47. 47.
    W. Perret, C. Schwenk, M.R. Ethmeier, T.R. Raphael, U. Alber, Case study for welding simulation in the automotive industry. Weld. World 55(11–12), 89–98 (2011)CrossRefGoogle Scholar
  48. 48.
    R.N. Lidam, Y.H.P. Manurung, E. Haruman, M.R. Redza, M.R. Rahim, M.S. Sulaiman, M.Y. Zakaria, G. Tham, S.K. Abas, C.Y. Chau, Angular distortion analysis of the multipass welding process on combined joint types using thermo-elastic-plastic FEM with experimental validation. Int. J. Adv. Manuf. Technol. 69(9–12), 2373–2386 (2013)CrossRefGoogle Scholar
  49. 49.
    J. Wang, J. Han, J.P. Domblesky, Z. Li, Y. Zhao, L. Sun, A plane stress model to predict angular distortion in single pass butt welded plates with weld reinforcement. Trans. ASME, J. Manuf. Sci. Eng. 139(5) (2017)Google Scholar
  50. 50.
    D. Siegele, Welding mechanics for advanced component safety assessment. Front. Mater. Sci. 5(2), 224–235 (2011)CrossRefGoogle Scholar
  51. 51.
    C. Veneziano, M. Brand, W. Pfeiffer, D. Siegele, P. Gumbsch, Simulation of welded aluminium automotive components. AutoTechnology 6(3), 60–63 (2006)Google Scholar
  52. 52.
    T.R. Lima, Determinação do campo de tenses residuais e distorções resultantes de processos de soldadura recorrendo ao Sysweld. Master’s thesis (Faculdade de Engenharia da Universidade do Porto, Portugal, 2014)Google Scholar
  53. 53.
    M. Zain-Ul-Abdein, D. Nelias, J.-F. Jullien, D. Deloison, Thermo-mechanical analysis of laser beam welding of thin plate with complex boundary conditions. Int. J. Mater. Form. 1(1), 1063–1066 (2008)CrossRefGoogle Scholar
  54. 54.
    M. Zain-ul Abdein, D. Nelias, J.-F. Jullien, D. Deloison, Prediction of laser beam welding-induced distortions and residual stresses by numerical simulation for aeronautic application. J. Mater. Process. Technol. 209(6), 2907–2917 (2009)CrossRefGoogle Scholar
  55. 55.
    T. Kannengiesser, A. Kromm, Formation of welding residual stresses in low transformation temperature (LTT) materials. Soldag. Insp. 14(1), 74–81 (2009)CrossRefGoogle Scholar
  56. 56.
    S.M.O. Tavares, P.M.G.P. Moreira, P.M.S.T. de Castro, Friction stir welding of T-joints fabricated with three parts, in Design, Fabrication and Economy of Welded Structures: International Conference Proceedings 2008, ed. by K. Jarmai, J. Farkas (Horwood Publishing Limited, Chichester, UK) (Elsevier, 2008), pp. 519–526CrossRefGoogle Scholar
  57. 57.
    S.M.O. Tavares, P.C.M. Azevedo, B. Emilio, V. Richter-Trummer, M.A.V. Figueiredo, P. Vilaca, P.M.S.T. de Castro, Friction stir welding of T-joints in dissimilar aluminium alloys, in ASME 2008 International Mechanical Engineering Congress and Exposition, no. IMECE2008-67522, Boston, Massachusetts, USA (American Society of Mechanical Engineers, 2008), pp. 265–273Google Scholar
  58. 58.
    S.M.O. Tavares, R.A.S. Castro, V. Richter-Trummer, P. Vilaca, P.M.G.P. Moreira, P.M.S.T. de Castro, Friction stir welding of T-joints with dissimilar aluminium alloys: mechanical joint characterisation. Sci. Technol. Weld. Join. 15(4), 312–318 (2010)CrossRefGoogle Scholar
  59. 59.
    L. Fratini, FSW of lap and T-joints, in Structural Connections for Lightweight Metallic Structures, ed. by P.M.G.P. Moreira, L.F.M. da Silva, P.M.S.T. de Castro (Springer-Verlag, Berlin, Heidelberg, 2010), pp. 125–149CrossRefGoogle Scholar
  60. 60.
    O. Doyen, N. Rizzo, L. Forest, J. Tosi, N. Thomas, M. Zmitko, Assessment of HCLL-TBM optimum welding sequence scenario to minimize welding distortions. Fus. Eng. Des. 121, 80–86 (2017)CrossRefGoogle Scholar
  61. 61.
    G. Fu, M.I. Lourenço, M. Duan, S.F. Estefen, Influence of the welding sequence on residual stress and distortion of fillet welded structures. Mar. Struct. 46, 30–55 (2016)CrossRefGoogle Scholar
  62. 62.
    M.S. Sulaiman, Y.H. Manurung, E. Haruman, M.R.A. Rahim, M.R. Redza, R.N.A. Lidam, S.K. Abas, G. Tham, C.Y. Chau, Simulation and experimental study on distortion of butt and T-joints using WELD PLANNER. J. Mech. Sci. Technol. 25(10), 2641–2646 (2011)CrossRefGoogle Scholar
  63. 63.
    H.M.E. Ramos, Modelação numérica de processos de soldadura usando ESI Sysweld. Master’s thesis (Faculdade de Engenharia da Universidade do Porto, Portugal, 2015)Google Scholar
  64. 64.
    H.M.E. Ramos, S.M.O. Tavares, P.M.S.T. de Castro, Numerical modelling of welded T-joint configurations using SYSWELD, in Materiais 2017: XVIII Congresso da Sociedade Portuguesa dos Materiais and VIII International Symposium on Materials (Aveiro, Portugal, 9–12 April 2017)Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Sérgio M. O. Tavares
    • 1
    Email author
  • Paulo M. S. T. de Castro
    • 1
  1. 1.Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations