Fatigue Crack Growth

  • Sérgio M. O. TavaresEmail author
  • Paulo M. S. T. de Castro
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Readers of this book will have previous knowledge of fracture mechanics, and as such no effort will be made to delve here into fundamental concepts.


  1. 1.
    C. Dharan, B. Kang, I. Finnie, Finnie’s Notes on Fracture Mechanics, (Springer Science+Business Media, 2016)Google Scholar
  2. 2.
    A.T. Zehnder, Fracture Mechanics (Springer Science+Business Media, 2012 )Google Scholar
  3. 3.
    T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 4th edn. (CRC Press, 2017)Google Scholar
  4. 4.
    E.E. Gdoutos, Fracture Mechanics: An Introduction (Springer, 2005)Google Scholar
  5. 5.
    P.P. Milella, Fatigue and Corrosion in Metals (Springer, 2013)Google Scholar
  6. 6.
    D. Gross, T. Seelig, Bruchmechanik: mit einer Einführung in die Mikromechanik, 6th edn. (Springer-Verlag, 2016)Google Scholar
  7. 7.
    H.A. Richard, M. Sander, Ermüdungsrisse: Erkennen, sicher beurteilen, vermeiden (Springer, 2009)Google Scholar
  8. 8.
    J.T.P. de Castro, M.A. Meggiolaro, Fadiga: Técnicas e Práticas de Dimensionamento Estrutural sob Cargas Reais de Serviço, Volume I - Iniciação de Trincas; Volume II - Propagação de Trincas, Efeitos Térmicos e Estocásticos (CreateSpace Independent Publishing Platform, 2009)Google Scholar
  9. 9.
    A. Arteiro, P.M.S.T. de Castro, Mecânica da Fratura e Fadiga: Exemplos de Cálculo e Aplicação (FEUP edições, 2014)Google Scholar
  10. 10.
    J.W. Bristow, P.E. Irving, Safety factors in civil aircraft design requirements. Eng. Fail. Anal. 14, 459–470 (2007)CrossRefGoogle Scholar
  11. 11.
    S.M.O. Tavares, P.M.S.T. de Castro, Fatigue crack growth of aircraft structures: sensitivity to materials parameters. Int. J. Terraspace Sci. Eng. 6(2), 71–75 (2014)Google Scholar
  12. 12.
    R. Jones, Fatigue crack growth and damage tolerance. Fatigue Fract. Eng. Mater. Struct. 37(5), 463–483 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Ge, Y. Sun, S. Zhou, L. Zhang, Y. Zhang, Q. Zhang, A hybrid frequency-time domain method for predicting multiaxial fatigue life of 7075–T6 aluminium alloy under random loading. Fatigue Fract. Eng. Mater. Struct. 38, 247–256 (2015)CrossRefGoogle Scholar
  14. 14.
    C.V. Haden, D.G. Harlow, Statistical characterization of the geometric properties of particles in 7075–T6 aluminium alloy. Fatigue Fract. Eng. Mater. Struct. 37, 1281–1290 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Heuler, H. Klätschke, Generation and use of standardised load spectra and load-time histories. Int. J. Fatigue 27(8), 974–990 (2005)CrossRefGoogle Scholar
  16. 16.
    Fatigue technology—FTI, Tooling Catalog. Revision 7 (Seattle, WA, USA, 2014)Google Scholar
  17. 17.
    P.F.P. de Matos, P.M.G.P. Moreira, P.P. Camanho, P.M.S.T. de Castro, Numerical simulation of cold working of rivet holes. Finite Elem. Anal. Des. 41(9–10), 989–1007 (2005)CrossRefGoogle Scholar
  18. 18.
    Y. Fu, E. Ge, H. Su, J. Xu, R. Li, Cold expansion technology of connection holes in aircraft structures: a review and prospect. Chin. J. Aeronaut. 28(4), 961–973 (2015)CrossRefGoogle Scholar
  19. 19.
    D.L. Andrew, P.N. Clark, D. Hoeppner, Investigation of cold expansion of short edge margin holes with pre-existing cracks in 2024–T351 aluminium alloy. Fatigue Fract. Eng. Mater. Struct. 37, 406–416 (2014)CrossRefGoogle Scholar
  20. 20.
    G.M. Vallières, D.L. DuQuesnay, Fatigue life of cold-expanded fastener holes with interference-fit fasteners at short edge margins. Fatigue Fract. Eng. Mater. Struct. 38(2015), 574–582 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Ali, X. An, C.A. Rodopoulos, M.W. Brown, P. Ohara, A. Levers, S. Gardiner, The effect of controlled shot peening on the fatigue behaviour of 2024–T3 aluminium friction stir welds. Int. J. Fatigue 29(8), 1531–1545 (2007)CrossRefGoogle Scholar
  22. 22.
    G. Ivetic, (guest-editor), Special issue: advances in laser shock peening theory and practice around the world—present solutions and future challenges. Int. J. Struct. Integr. 2(1) (2011)Google Scholar
  23. 23.
    C.A. Rodopoulos, J. Bridges, The use of ultrasonic impact treatment to extend the fatigue life of integral aerospace structures, in Engineering Against Fracture: Proceedings of the 1st Conference, ed. by S. Pantelakis, C. Rodopoulos (Springer, 2009), pp. 421–430Google Scholar
  24. 24.
    R. Jones, N. Matthews, C.A. Rodopoulos, K. Cairns, S. Pitt, On the use of supersonic particle deposition to restore the structural integrity of damaged aircraft structures. Int. J. Fatigue 33, 1257–1267 (2011)CrossRefGoogle Scholar
  25. 25.
    R. Jones, L. Molent, S. Barter, N. Matthews, D. Tamboli, Supersonic particle deposition as a means for enhancing the structural integrity of aircraft structures. Int. J. Fatigue 68, 260–268 (2014)CrossRefGoogle Scholar
  26. 26.
    N. Matthews, R. Jones, G.C. Sih, Application of supersonic particle deposition to enhance the structural integrity of aircraft structures. Sci. China: Phys. Mech. Astron. 57(1), 12–18 (2014)Google Scholar
  27. 27.
    Congressional Record-House, Conference report on H.R. 4546, Bob Stump National Defense Authorization Act for Fiscal Year 2003 (see: Sec. 1067. Prevention and mitigation of corrosion of military equipment and infrastructure.) (2002) pp. H8092–H8535Google Scholar
  28. 28.
    US Department of Defense—DoD, Corrosion prevention and mitigation strategic plan. September 2011Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Sérgio M. O. Tavares
    • 1
    Email author
  • Paulo M. S. T. de Castro
    • 1
  1. 1.Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations