Advertisement

Key Questions and Recent Research Advances on Harmful Algal Blooms in Stratified Systems

  • Robin Raine
  • Elisa Berdalet
  • Hidekatsu Yamazaki
  • Ian Jenkinson
  • Beatriz Reguera
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 232)

Abstract

This chapter synthesizes progress achieved in the understanding of the dynamics of harmful algal blooms (HABs) under the auspices of the GEOHAB Core Research Project HABs in Stratified Systems. A variety of aquatic environments are considered, where small-scale hydrographic features may be encountered in stratified water columns. A special emphasis is put on subsurface thin-layer structures, which, thanks to advances in fine-resolution sampling and observation methods, have dramatically changed our comprehension of HAB events. The importance of small-scale physical–biological interactions as well as chemically driven relationships between HAB species and components of the food web are also key topics addressed. Research priorities are identified and the potential offered by new approaches and advanced instrumentation is discussed.

Notes

Acknowledgments

This chapter is a contribution of the GEOHAB Core Research Project on HABs in Stratified Systems. It is a tribute to our colleague and friend Patrick Gentien who passed away in 2010. Patrick inspired and fostered research of the fine- and small-scale processes involved in HAB dynamics.

References

  1. Alldredge AL, Cowles TJ, MacIntyre S et al (2002) Occurrence and mechanism of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord. Mar Ecol Prog Ser 233:1–12CrossRefGoogle Scholar
  2. Berdalet E, Llaveria G, Simó R (2011) Modulation of small-scale turbulence on methylsulfoniopropionate (DMSP) concentration in an Alexandrium minutum (Dinophyceae) culture: link with toxin production. Harmful Algae 10:88–95CrossRefGoogle Scholar
  3. Berdalet E, McManus MA, Ross ON et al (2014) Understanding harmful algae in stratified systems: review of progress and future directions. Deep Sea Res Part II 101:4–20CrossRefGoogle Scholar
  4. Berdalet E, Montresor M, Reguera B (2017a) Harmful algal blooms in fjords, coastal embayments, and stratified systems: recent progress and future research. Oceanography 30(1):46–57CrossRefGoogle Scholar
  5. Berdalet E, Tester PA, Chinain M (2017b) Harmful algal blooms in benthic systems: recent progress and future research. Oceanography 30(1):36–45CrossRefGoogle Scholar
  6. Blossom HE, Daugbjerg N, Hansen PJ (2012) Toxic mucus traps: a novel mechanism that mediates prey uptake in the mixotrophic dinoflagellae Alexandrium pseudogonyaulax. Harmful Algae 17:40–53CrossRefGoogle Scholar
  7. Brosnahan ML, Velo-Suárez L, Ralston DK (2015) Rapid growth and concerted sexual transitions by a bloom of the harmful dinoflagellate Alexandrium fundyense (Dinophyceae). Limnol Oceanogr 60:2059–2078CrossRefPubMedPubMedCentralGoogle Scholar
  8. Calleja ML, Duarte CM, Prairie YT et al (2009) Evidence for surface organic matter modulation of air-sea CO2 gas exchange. Biogeosciences 6:1105–1114CrossRefGoogle Scholar
  9. Campbell L, Olson RJ, Sosik HM et al (2010) First harmful Dinophysis (Dinophyceae, Dinophysiales) bloom in the U.S. revealed by automated imaging flow cytometry. J Phycol 46:66–75CrossRefGoogle Scholar
  10. Carlson DJ (1987) Viscosity of sea-surface slicks. Nature 329:823–825CrossRefGoogle Scholar
  11. Cheriton OM, McManus MA, Stacey MT et al (2009) Physical and biological controls on the maintenance and dissipation of a thin phytoplankton layer. Mar Ecol Prog Ser 378:55–69CrossRefGoogle Scholar
  12. Davidson K, Miller P, Wilding TA et al (2009) A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006. Harmful Algae 8:349–361CrossRefGoogle Scholar
  13. Dekshenieks MM, Donaghay PL, Sullivan JM et al (2001) Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes. Mar Ecol Prog Ser 223:61–71CrossRefGoogle Scholar
  14. Díaz PA, Ruiz-Villarreal M, Velo-Suárez L et al (2014) Tidal and wind-event variability and the distribution of two groups of Pseudo-nitzschia species in an upwelling-influenced ría. Deep Sea Res Part II 101:163–179CrossRefGoogle Scholar
  15. Donaghay PL, Osborn TR (1997) Toward a theory of biological-physical control of harmful algal bloom dynamics and impacts. Limnol Oceanogr 42:1283–1296CrossRefGoogle Scholar
  16. Escalera L, Pazos Y, Doval MD et al (2012) A comparison of integrated and discrete depth sampling for monitoring toxic species of Dinophysis. Mar Pollut Bull 64:106–113CrossRefPubMedGoogle Scholar
  17. Estrada M, Berdalet E (1998) Effects of turbulence on phytoplankton. In: Anderson DM, Cembella AD, Halleagraaf GM (eds) Physiological ecology of harmful algal blooms, NATO ASI series G: ecological series, vol 41. Springer, Berlin, Heidelberg, New York, pp 601–618Google Scholar
  18. Farrell H, Gentien P, Fernand L et al (2012) Scales characterising a high density thin layer of Dinophysis acuta Ehrenberg and its transport within a coastal jet. Harmful Algae 15:36–46CrossRefGoogle Scholar
  19. Farrell H, Gentien P, Fernand L et al (2014) Vertical and horizontal controls of a haptophyte thin layer in the Bay of Biscay, France. Deep Sea Res Part II 101:80–94CrossRefGoogle Scholar
  20. Fischer AD (2017) Alexandrium catenella cyst dynamics in a coastal embayment: temperature dependence of dormancy, germination, and bloom initiation. PhD Thesis, Massachusetts Institute of Technology, 165ppGoogle Scholar
  21. Flynn KJ (2008) Attack is not the best form of defense: lessons from harmful algal bloom dynamics. Harmful Algae 8:129–139CrossRefGoogle Scholar
  22. Foloni-Neto H, Lueck R, Mabuchi Y et al (2014) A new quasi-horizontal glider to measure biophysical microstructure. J Atmos Oceanic Technol 31:2278–2293.  https://doi.org/10.1175/JTECH-D-13-00240.1CrossRefGoogle Scholar
  23. Gentien P (1998) Bloom dynamics and ecophysiology of the Gymnodinium mikimotoi species complex. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms Physiological ecology of harmful algal blooms, NATO ASI series G: ecological series, vol 41. Springer, Berlin, Heidelberg, New York, pp 155–173Google Scholar
  24. Gentien P, Donaghay PL, Yamazaki H et al (2005) Harmful algal blooms in stratified environments. Oceanography 18:172–183CrossRefGoogle Scholar
  25. GEOHAB (2008) Global ecology and oceanography of harmful algal blooms, GEOHAB core research project: HABs in stratified systems. Gentien P, Reguera B, Yamazaki H et al (eds) SCOR and IOC, Paris, France, and Newark, Delaware, USA, 59 ppGoogle Scholar
  26. GEOHAB (2011) GEOHAB modelling: linking observations to predictions, a workshop report. McGillicuddy DJ Jr, Glibert PM, Berdalet E et al (eds) IOC and SCOR, Paris and Newark, Delaware, 85 ppGoogle Scholar
  27. GEOHAB (2013) Global ecology and oceanography of harmful algal blooms, GEOHAB core research project on HABs in stratified systems. Workshop on advances and challenges for understanding physical-biological interactions in HABs in stratified systems. McManus MA, Berdalet E, Ryan J et al (eds) IOC and SCOR, Paris and Newark, Delaware, U.S. 62 ppGoogle Scholar
  28. Glibert PM, Pitcher GC, Bernard S et al (2018) Advancements and continuing challenges of emerging technologies and tools for detecting harmful algal blooms, their antecedent conditions and toxins, and applications in predictive models. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 339–357Google Scholar
  29. González-Gil S, Velo-Suárez L, Gentien P et al (2010) Phytoplankton assemblages and characterization of a Dinophysis acuminata population during an upwelling–downwelling cycle. Aquat Microb Ecol 58:273–286CrossRefGoogle Scholar
  30. Greer AT, Cowen RK, Guigand CM et al (2013) Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton. J Plankton Res 35:939–956CrossRefGoogle Scholar
  31. Hanson AK Jr, Donaghay PL (1998) Micro- to fine-scale chemical gradients and layers in stratified coastal waters. Oceanography 111:10–17CrossRefGoogle Scholar
  32. Hill AE, Brown J, Fernand L et al (2008) Thermohaline circulation of shallow tidal seas. Geophys Res Lett 35:L11605.  https://doi.org/10.1029/2008GL033459CrossRefGoogle Scholar
  33. Jaffe JS, Franks PJS, Briseno C et al (2013) Advances in underwater fluorometry, from bulk fluorescence to planar laser imaging of individuals. In: Watson J, Zielinski O (eds) Subsea optics and imaging. Woodhead Publishing Limited, Cambridge.  https://doi.org/10.1533/9780857093523.3.536CrossRefGoogle Scholar
  34. Jenkinson IR (1986) Oceanographic implications of non-newtonian properties found in phytoplankton cultures. Nature 323:435–437CrossRefGoogle Scholar
  35. Jenkinson IR (2014) Nano- and microfluidics, rheology, exopolymeric substances and fluid dynamics in calanoid copepods. In: Seuront L (ed) Copepods: diversity, habitat and behavior. Nova Science Publishers, New York, pp 181–214Google Scholar
  36. Jenkinson IR, Biddanda BA (1995) Bulk-phase viscoelastic properties of seawater relationship with plankton components. J Plankton Res 17:2251–2274CrossRefGoogle Scholar
  37. Jenkinson IR, Claireaux G, Gentien P (2007) Biorheological properties of intertidal organic fluff on mud flats and its modification of gill ventilation in buried sole Solea solea. Mar Biol 150:471–485CrossRefGoogle Scholar
  38. Jenkinson IR, Sun J (2010) Rheological properties of natural waters with regard to plankton thin layers. J Mar Syst 83:287–297CrossRefGoogle Scholar
  39. Jenkinson IR, Sun J (2011) A model of pycnocline thickness modified by the rheological properties of phytoplankton exopolymeric substances. J Plankton Rese 33:373–383CrossRefGoogle Scholar
  40. Jenkinson IR, Wyatt T (1992) Selection and control of Deborah numbers in plankton ecology. J Plankton Res 14:1697–1721CrossRefGoogle Scholar
  41. Kamykowski D, Yamazaki H, Yamazaki AK et al (1998) A comparison of how different orientation behaviours influence dinoflagellate trajectories and photoresponses in turbulent water columns. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms, NATO ASI series G: ecological series, vol 41. Springer, Berlin, Heidelberg, New York, pp 581–599Google Scholar
  42. Karp-Boss L, Boss E, Jumars PA (1996) Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr Mar Biol Annu Rev 34:71–109Google Scholar
  43. Kesaulya I, Leterme SC, Mitchell JG et al (2008) The impact of turbulence and phytoplankton dynamics on foam formation, seawater viscosity and chlorophyll concentration in the eastern English Channel. Oceanologia 50:167–182Google Scholar
  44. Kiørboe T (1997) Small-scale turbulence, marine snow formation, and planktivorous feeding. In: Marrasé C, Saiz E, Redondo JM (eds) Lectures on plankton and turbulence. Sci Mar 61(Supl. 1):141–158Google Scholar
  45. Klausmeier CA, Litchman E (2001) Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnol Oceanogr 46:1998–2007CrossRefGoogle Scholar
  46. Kolmogorov AN (1941) Dissipation of energy in isotropic turbulence. Dokl Akad Nauk SSSR 32:19–21Google Scholar
  47. Kononen K, Huttunen M, Hällfors S et al (2003) Development of a deep chlorophyll maximum of Heterocapsa triquetra Ehrenb. at the entrance to the Gulf of Finland. Limnol Oceanogr 48:594–607CrossRefGoogle Scholar
  48. Lasker R (1978) Fishing for anchovies off California. Mar Pollut Bull 9:320–321CrossRefGoogle Scholar
  49. Lunven M, Guillaud JF, Youenou A et al (2005) Nutrient and phytoplankton distribution in the Loire River plume (Bay of Biscay, France) resolved by a new Fine Scale Sampler. Estuar Coast Shelf Sci 65:94–108CrossRefGoogle Scholar
  50. Lunven M, Landeira JM, Lehaître M et al (2012) In situ video and fluorescence analysis (VFA) of marine particles: applications to phytoplankton ecological studies. Limnol Oceanogr Methods 10:807–823CrossRefGoogle Scholar
  51. MacKenzie L, Beuzenberg V, Holland P et al (2004) Solid phase adsorption toxin tracking (SPATT): a new monitoring tool that simulates the biotoxin contamination of filter feeding bivalves. Toxicon 44:901–918CrossRefPubMedGoogle Scholar
  52. Mafra LL Jr, Nagai S, Uchida H et al (2016) Harmful effects of Dinophysis to the ciliate Mesodinium rubrum: implications for prey capture. Harmful Algae 59:82–90CrossRefPubMedGoogle Scholar
  53. Mann KH, Lazier JRN (1991) Dynamics of marine ecosystems. Biological-physical interactions in the oceans. Blackwell Scientific Publications, BostonGoogle Scholar
  54. Mari X, Torréton J-P, Trinh CBT et al (2012) Aggregation dynamics along a salinity gradient in the Bach Dang estuary, North Vietnam. Estuar Coast Mar Sci 96:151–158CrossRefGoogle Scholar
  55. Matrai P, Thompson B, Keller M (2005) Circannual excystment patterns of Alexandrium spp. from eastern Gulf of Maine populations. Deep Sea Res Part II 52:2560–2568CrossRefGoogle Scholar
  56. McGillicuddy D Jr (2010) Models of harmful algal blooms: conceptual, empirical and numerical approaches. J Mar Syst 83:105–107CrossRefPubMedPubMedCentralGoogle Scholar
  57. McManus MA, Alldredge AL, Barnard A et al (2003) Changes in characteristics, distribution and persistence of thin layers over a 48-hour period. Mar Ecol Prog Ser 261:1–19CrossRefGoogle Scholar
  58. McManus MA, Kudela RM, Silver MV et al (2008) Cryptic blooms: are thin layers the missing connection? Estuar Coasts 31:396–401CrossRefGoogle Scholar
  59. Miyake Y, Koizumi M (1948) The measurement of the viscosity coefficient of seawater. J Mar Res 7:63–66Google Scholar
  60. Ní Rathaille A, Raine R (2011) Seasonality in the excystment of Alexandrium minutum and Alexandrium tamarense in Irish coastal waters. Harmful Algae 10(6):629–635CrossRefGoogle Scholar
  61. Pitcher GC, Figueiras FG, Kudela RM et al (2018) Key questions and recent research advances on harmful algal blooms in eastern boundary upwelling systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 205–227Google Scholar
  62. Raine R, Berdalet E, McManus MA et al (eds) (2014) Harmful algal blooms in stratified systems. Deep Sea Res Part II 101:254Google Scholar
  63. Raine R, Cosgrove S, Fennell S et al (2017) Origins of Dinophysis blooms which impact Irish aquaculture. In: Proenca LAO, Hallegraeff G (eds) Proceedings of the 17th conference on harmful algae, Florianopolis, Brazil, October 2016 (in press)Google Scholar
  64. Ralston DK, Keafer BA, Brosnahan ML et al (2014) Temperature dependence of an estuarine harmful algal bloom: resolving interannual variability in bloom dynamics using a degree day approach. Limnol Oceanogr 59:1112–1126CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rines JEB, Donaghay PL, Dekshenieks MM et al (2002) Thin layers and camouflage: hidden Pseudo-nitzschia populations in a fjord in the San Juan Islands, Washington, USA. Mar Ecol Prog Ser 225:123–137CrossRefGoogle Scholar
  66. Ross ON, Sharples J (2008) Swimming for survival: the role of phytoplankton motility in turbulent environments. J Mar Syst 70:248–262CrossRefGoogle Scholar
  67. Rothschild BJ, Osborn TR (1988) Small-scale turbulence and plankton contact rates. J Plankton Res 10:465–474CrossRefGoogle Scholar
  68. Rothstein JP (2010) Slip on superhydrophobic surfaces. Annu Rev Fluid Mech 42:89–209CrossRefGoogle Scholar
  69. Ryan JP, McManus MA, Paduan JD et al (2008) Phytoplankton thin layers caused by shear in frontal zones of a coastal upwelling system. Mar Ecol Prog Ser 354:21–34CrossRefGoogle Scholar
  70. Ryan JP, McManus MA, Sullivan JM (2010) Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont Shelf Res 30:7–16CrossRefGoogle Scholar
  71. Schmid CE (1993) Cell-cell-recognition during fertilization in Ectocarpus siliculosus (Phaeophyceae). Hydrobiologia 260/261:437–443CrossRefGoogle Scholar
  72. Seuront L, Lacheze C, Doubell M et al (2007) The influence of Phaeocystis globosa on microscale spatial patterns of chlorophyll a and bulk-phase seawater viscosity. Biogeochemistry 83:173–188CrossRefGoogle Scholar
  73. Seuront L, Vincent D, Mitchell JG (2006) Biologically induced modification of seawater viscosity in the Eastern English Channel during a Phaeocystis globosa spring bloom. J Mar Syst 61:118–133CrossRefGoogle Scholar
  74. Smayda TJ (2002) Turbulence, watermass stratification and harmful algal blooms: an alternative view and frontal zones as “pelagic seed banks”. Harmful Algae 1:95–102CrossRefGoogle Scholar
  75. Stacey MT, McManus MA, Steinbuck JV (2007) Convergences and divergences and thin layer formation and maintenance. Limnol Oceanogr 52:1523–1532CrossRefGoogle Scholar
  76. Steinbuck JV, Stacey MT, McManus MA et al (2009) Observations of turbulent mixing in a phytoplankton thin layer: implications for formation, maintenance, and breakdown. Limnol Oceanogr 544:1353–1368CrossRefGoogle Scholar
  77. Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Conseil 18:287–295CrossRefGoogle Scholar
  78. Svetlic V, Balnois E, Žutic V et al (2006) Electrochemical detection of gel microparticles in seawater. Croat Chem Acta 79:107–113Google Scholar
  79. Tang YZ, Gobler CJ (2010) Allelopathic effects of Cochlodinium polykrikoides isolates and blooms from the estuaries of Long Island, New York, on co-occurring phytoplankton. Mar Ecol Prog Ser 406:19–31CrossRefGoogle Scholar
  80. Tillmann U, John U (2002) Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP toxin content. Mar Ecol Prog Ser 230:47–58CrossRefGoogle Scholar
  81. Timmermann A, Timmerman HV, McManus MA et al (2014) Hidden thin layers of toxic diatoms in a coastal bay. Deep Sea Res Part II 101:129–140CrossRefGoogle Scholar
  82. Trainer VL, Bates SS, Lundholm N et al (2012) Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 14:271–300CrossRefGoogle Scholar
  83. Velo-Suárez L, González-Gil S, Gentien P et al (2008) Thin layers of Pseudo-nitzschia spp. and the fate of Dinophysis acuminata during an upwelling-downwelling cycle in a Galician Ría. Limnol Oceanogr 53:1816–1834CrossRefGoogle Scholar
  84. Velo-Suárez L, Reguera B, González-Gil S et al (2010) Application of a 3D Lagrangian model to explain the decline of a Dinophysis acuminata bloom in the Bay of Biscay. J Mar Syst 83:242–252CrossRefGoogle Scholar
  85. Velo-Suárez L, González-Gil S, Pazos Y et al (2014) The growth season of Dinophysis acuminata in an upwelling system embayment: a conceptual model based on in situ measurements. Deep Sea Res Part II 101:141–151CrossRefGoogle Scholar
  86. Wong T-S, Kang SH, Tang SKY et al (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447CrossRefPubMedGoogle Scholar
  87. Wyatt T, Jenkinson IR (1997) Notes on Alexandrium population dynamics. J Plankton Res 19:551–575CrossRefGoogle Scholar
  88. Yamazaki H, Honma H, Nagai T et al (2010) Multilayer biological structure and mixing in the upper water column of Lake Biwa during summer 2008. Limnology 11:63–70CrossRefGoogle Scholar
  89. Yamazaki H, Locke C, Umlauf L et al (2014) A Lagrangian model for phototaxis-induced thin layer formation. Deep Sea Res Part II 101:193–206CrossRefGoogle Scholar
  90. Yamasaki Y, Shikata T, Nukata A et al (2009) Extracellular polysaccharideprotein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community. ISME J 3:808–817CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Robin Raine
    • 1
  • Elisa Berdalet
    • 2
  • Hidekatsu Yamazaki
    • 3
  • Ian Jenkinson
    • 4
  • Beatriz Reguera
    • 5
  1. 1.Earth and Ocean SciencesNational University of IrelandGalwayIreland
  2. 2.Institute of Marine Sciences (CSIC)BarcelonaSpain
  3. 3.Tokyo University of Marine Science and TechnologyTokyoJapan
  4. 4.ACRO, La Roche-Canillac, France and Institute of OceanologyQingdaoChina
  5. 5.Instituto Español de Oceanografía, Centro Oceanográfico de VigoVigoSpain

Personalised recommendations